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Abstract. A stress-strength model is formulated for a multi-component system consisting
of k identical components. The k components of the system with random strengths (X, X5,
..., Xy) are subjected to one of the r random stresses (Xy+1, Xk+2, .-+, Xk+r). The estimation
of system reliability based on maximum likelihood estimates (MLEs) and Bayes
estimators in k component system are obtained when the system is either parallel or series
with the assumption that strengths and stresses follow exponential distribution. A
simulation study is conducted to compare MLE and Bayes estimator through the mean
squared errors of the estimators.
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1. INTRODUCTION

The problem of estimating reliability P[X>Y] in a stress-strength model has been
discussed in the literature extensively when X and Y have some specified distribution.
Enis and Geiser(1971), Tong (1974), Kelley, Kelley and Schucany (1976) have considered
this problem when X and Y follow independent exponential distributions. Beg and Singh
(1979) considered this problem when X and Y follow two parameter exponential
distribution. Further, the problem of estimation of P[X;>Max ((X;, X;)] has been
considered by Hanagal (1996a) when (X, X,) follow bivariate exponential models and X;
follow independent exponential distribution. Hanagal (1996b) considered the estimation of
P[Xi<Min(X;, X5, ..., Xi1)] when (X;, X5, ..., Xii) follow multivariate Pareto
distribution. Hanagal (1998) considered the problem of estimating P[Xy+;<Min(X;, X, ...,
Xy)] and P[ Xy <Max(X;, X, ..., Xx)] when X, X,, ..., Xy are strengths subjected to a
common stress X+, assuming that X;, Xo, ..., X4 follow independent two parameter
exponential distributions. Hanagal (2003) obtained maximum likelihood estimators for
P[Xk+1<Min(X1, Xz, ey Xk)] and P[Xk+1<MaX(X1, Xz, ceey Xk)] when Xl, Xz, ey Xk are
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strengths subjected to a common stress Xy, assuming that X;, X, ..., Xy follow
independent Pareto or Weibull or Gamma distribution.

Recently few of the papers on Estimation of Reliability in multi-component stress-strength
systems are found in the literature. For example, Rao and Kantam (2010) discusses the
estimation of reliability when the underlined distribution is Log-Logistic; Rao (2012a, b)
discusses the similar problem taking stress and strength distribution as Rayleigh and
Generalized Exponential. Further, Gogoi and Borah (2012) considered the estimation of
reliability in multi-component standby system.

One can observe that the researchers in this area considered the problem of estimation of
reliability for stress-strength models, taking many strengths and maximum of two stresses.
However, there are situations where one can think of multiple independent stresses. For
example, consider a system of identical Generator sets synchronizing with and running in
parallel with the supply utility grid. Each generator with independent strengths such as the
voltage magnitude, the frequency of the voltages and the phase angle between the voltages
with independent stresses such as power failures, short circuit currents, Earth fault
currents and voltage and frequency transients can be considered as a multi-component
system with multiple stresses. Again in an optical communication system an optical fiber
with independent strengths namely, enormous potential bandwidth, small size and weight,
electrical isolation, immunity to interference and cross talk, signal security, low
transmission loss, potential low cost etc. are operating on independent stresses such as
material absorption, linear scattering losses, filter band losses, dispersion and polarization.
The present paper considers the estimation of reliability of Exponential Stress-Strength
model with multi-component system with more than two stresses. Hence, this paper
presents a general methodology that can be applied to the situations with many stresses
which includes the earlier works as its particular cases.

In this paper we consider the estimation of R;= P[Max(Xy+1, Xk+2, ..., Xkr)< Max (X, Xa,
.-» Xi)] and Re= P[Max(Xy+1, Xis, -+ -» Xier)<Min (Xy, Xy, ..., Xi)] when X, Xo,..., X are
strengths subjected to one of the stresses Xy+1, X2, ..., Xk, assuming that X, X,, ...,
X+ follow independent exponential distributions.

In section 2, we derive the expression for system reliability of series and parallel systems
for an exponential stress-strength model. The MLEs for the parameters and reliability
functions with their asymptotic distributions are derived in section 3. In Section 4, the
Bayes estimators are derived. Section 5 deals with evaluating the performance of the
MLESs and Bayes estimators of reliability functions by estimating the mean squared errors
(MSEs) through simulations. Some remarks and conclusions are given in section 6.

2. SYSTEM RELIABILITY

Consider a multi-component system with k identical components. Here, we assume
that strengths of k components are subjected to one of the r stresses. Let X, X5, ..., Xy be
strengths having exponential distribution with parameter g, , subjected to one of the

stresses Xy+1, Xk+2, - .-, Xk+r, that follow exponential distribution with parameter 0, .
The p.d.f. of X; is given by
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f.()=6e% ,x>0,6>0,i=12,.,k

and
f(x)=0,e% [ x>0,6,>0,i=k+Lk+2.. k+r

Then the distribution function of U = Max(X,, X,,..., X, ) is given by
G,(u)= PU <u]=[t—e[
and the distribution function of V = MaxX(X, ., Xy 1,..., Xy, ) 1 given by
G,(v)= PV <v]=1—e ]

Now in parallel system, the system reliability is
R, =PV <U]

- [G,v)dG, v)
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On the similar lines, the distribution function of W =Min(X,, X,,..., X () is given by
G,(w)=1-g %™

Then the system reliability for a series system is obtained as

R=P[V <W]

o _ r—1
=16, [e 4 (1—e " dw
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As the reliability function of both series and parallel systems involve 91 and @, , first we
consider the estimation of (91 and 6, , using method of maximum likelihood and then the

system reliability estimates are obtained in the next section.
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3. MAXIMUM LIKELIHOOD ESTIMATORS FOR PARAMETERS &, 92 AND
RELIABILITY

Consider a k-component system, in which components are subjected to r stresses. Let
X1, Xiz, -.., Xix (1 =1,2,...,n) be a random sample of strengths of n systems, that are

exponentially distributed with parameter (91 and X k+1, Xiges -+ Xiker (1 =1,2,...,n) be a

random sample of stresses corresponding to n systems, that are exponentially distributed
with parameter ¢, .

The MLEs of R, and R, based on @ = (6,,6,) are given by
R, =R,@) , R, =R, ()

where é = (él ,éz) .

The MLEs of 491 and 92 are obtained as

A nk A nr

01 = 02 = Tn ker
2 X > 2%

i=1 j=1 i=1 j=k+1

b

The asymptotic variances of the MLEs of 01 and 92 are given by
e A O?

V(@)=L V(b,)=-2-

@)= V@)=

The MLEs § are consistent asymptotically normal with mean ¢ and variance-covariance
2 2

matrix diag( 971’ ‘972 ) Since ﬁpand Fis are functions of §, asymptotic distribution of
n n

F}pand R,are given as below.

The distribution of ﬁp is AN (Rp , Bl’DABp) and that of FAQS is AN (RS , B;ABS) where

= % aRip ' R — aRs aRs and A:ldlag 9712 0722
P log " o0, *lag,’ 00, n k’r |
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4. BAYES ESTIMATION OF RELIABILITY FUNCTION

In this section Bayes estimator of R, and Ry are derived by considering the prior

distribution of the parameters ¢, and 6, as,
|
g(Hl):@e A9 6,>0,a20

g(ez)zie—@2 0, 6,50, >0

r(s)

The Bayes estimator of Reliability function FipB is obtained as the posterior expectation of

R, is given by

Ro=] [R, 1(0.0.]x, .., ) 4600
0

S =8

where
1

— A A 0n1k+a—1 0n2r+ﬂ—1
r(nk+a)0(n, r+4) A Ay 2
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Therefore,

A A1 A2 k k1 r (K=1\T e OOOOAS 01ﬂ1k+a 02r12r+ﬂ—1

Rps = -1 dg,de
= Tkra)tmrig) Sl 1 )T U ig tme 449%:

Similarly, the Bayes estimator of Reliability function Req is obtained as the posterior

expectation of és is given by

3 A‘A2r fr-1 m Tt A3 nk+a-1 gnr+p
Ry = -1 oM 9F dg,do
* F(n1k+a)1“(n2r+ﬁ)mzo( m D M[k6’1+(m+l)02] ‘ ? e

5. SIMULATION STUDY

A simulation study is conducted to evaluate MSEs of reliabilities of series and

parallel systems with different strengths and stresses. A simulation study of 100,000
samples of size n=5, 6, 8, 10 are generated for different values of k, the number of
strengths, r, the number of stresses and the parameters (0, 0,) as specified in tables.
Based on the simulation study for the parameters considered, the values of MLE and
Bayes estimators for R, and R, with their MSEs are presented in Table 1, 2, 3 and 4 for
different combinations of (01, 05, k, r, a, B). The actual values of R, and R, are also given
which can be compared with estimates.

Table 1. MLEs, Bayes estimators and MSE for estimates of Ry and R
6,=1 6,=25 k=3 r=2 a=18 p=2.1 R, =0.879329 R, =0.284090)

m=n | R, Rq Rps Re MSE(Fip) MSE(R,) | MSE[Rys) | MSE(Rgs)
5 0.846445 | 0.258412 | 0.845167 | 0.281921 0.004304 0.005035 0.004025 0.004273
6 0.909326 | 0.351222 | 0.905904 | 0.369566 0.004146 0.011215 0.003698 0.013761
8 0.821581 | 0.238086 | 0.821807 | 0.253442 0.008443 0.007697 0.008001 0.006477
10 0.876202 | 0.294144 | 0.874218 | 0.306486 0.002544 0.005098 0.002441 0.005391

Table 2. MLEs, Bayes estimators and MSE for estimates of R, and Ry
6=1 6,=25 k=3 r=3 a=18 f=2.1 R =0.838702 R, =0.202922)

m=n | R, Ry Ros Ry | MSERR,) MSE(Rs ) MSE(R ) MSE(Rqg )
5 0.779619 | 0.182047 | 0.771831 | 0.194386 0.018542 0.006661 0.018262 0.006275
6 0.842329 | 0.235178 | 0.834170 | 0.245044 0.009429 0.008576 0.009057 0.009090
8 0.862519 | 0.236461 | 0.855189 | 0.244547 0.002554 0.003903 0.002267 0.004419
10 0.835093 | 0.222416 | 0.829934 | 0.228865 0.007064 0.006987 0.007002 0.007137
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Table 3. MLEs, Bayes estimators and MSE for estimates of R, and Rg
(6,=1 6,=25 k=4 r=3 a=18 =21 R =0893476 R, =0.139353)

n=ny | R, Rq Rps Rsg MSE(FQP) msE(R, MSE(FEpB) MSE(FEsB)
5 0.893960 | 0.167165 | 0.887890 | 0.173073 0.004528 0.006304 0.004397 0.007542
6 0.862057 | 0.125870 | 0.857030 | 0.139121 0.004387 0.002008 0.004539 0.001933
8 0.879792 | 0.152703 | 0.875876 | 0.162987 0.007493 0.004027 0.007205 0.004536
10 0.892604 | 0.155051 | 0.890223 | 0.163623 0.002453 0.003915 0.002610 0.004272

Table 4. MLEs, Bayes estimators and MSE for estimates of R, and R,
(=1 6,=25 k=5 r=3 a=18 f=2.1 R =0925672 R, =0.10)

m=ny | R, Rq Ros Re | MSER,) MSE(Iis) MSE(R ) MSE(IisB)
5 0.907061 | 0.126030 | 0.904532 | 0.142190 0.011715 0.004897 0.009803 0.006505
6 0.917737 | 0.110199 | 0.913780 | 0.123952 0.002885 0.001886 0.002804 0.002556
8 0.909369 | 0.097404 | 0.904837 | 0.107475 0.002121 0.001227 0.0024383 0.00139
10 0.904645 | 0.095929 | 0.902394 | 0.103825 0.002888 0.001353 0.003367 0.001451

Table 5. MLEs, Bayes estimators and MSE for estimates of R, and R
(6,=1 6,=25 k=5 r=5 a=18 B=2.1 R =0.889284 R =0.047619)

m=n | R, Rs Ros Rg | MSER,) msE(R, MSE(R ) MSE(Ryg |
5 0.863880 | 0.053039 | 0.853786 | 0.060150 0.005661 0.001486 0.006369 0.001741
6 0.865678 | 0.046744 | 0.85605 | 0.052741 0.003848 0.000607 0.004387 0.000688
8 0.878542 | 0.049224 | 0.871384 | 0.053955 0.002533 0.000384 0.002686 0.0004523
10 0.902895 | 0.055263 | 0.903949 0.0599 0.000546 0.000156 0.000524 0.000251

6. SOME REMARKS AND CONCLUSIONS

1. In this paper, we have considered exponential stress-strength model for estimating the
parameters and reliability functions.

2. In exponential stress-strength models, the parameters are estimated using the method of
maximum likelihood (ML) and then the estimators for reliability function for parallel
and series system, when the system has k independent strength and r independent
stresses.
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3. The Bayes estimators are also derived for the reliability of series and parallel systems
with respect to conjugate priors and their MSEs are evaluated using simulation. It can
be observed that MLEs are slightly better than Bayes estimators.

4. The simulation study reveals that the estimators for parameters and reliability are very
close to the actual value having very small MSE. Hence, the need for deriving
uniformly minimum variance estimators are very limited as the MLEs obtained here
are very efficient.
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