DOI QR코드

DOI QR Code

Analysis of Joints Using Metal Seals in Liquid Rocket Engine Turbopump

액체로켓엔진 터보펌프의 금속 실 체결부 해석

  • Yoon, Suk-Hwan (Turbopump Department, Korea Aerospace Research Institute) ;
  • Jeon, Seong Min (Turbopump Department, Korea Aerospace Research Institute) ;
  • Kim, Jinhan (Turbopump Department, Korea Aerospace Research Institute)
  • Received : 2013.06.05
  • Accepted : 2013.11.11
  • Published : 2013.12.01

Abstract

Turbopump is typically an assembly of rotors and casings, and there are a number of joints between them. Every joint should be leak-proof, so there is always a seal to accomplish the goal. Among various seals, metal seals are advantageous in that they are robust at high pressure, and at wide range of temperature. In this study, flange joints using conical seal made of stainless steel, solid flat metal seal made of copper and metal C seal made of Inconel 718 were structurally designed and analyzed, considering both initial tightening and operating conditions.

액체로켓엔진의 핵심부품인 터보펌프는 회전체와 케이싱으로 이루어진 여러 부품의 조립체로서 각종 체결 부분에 매질의 누설방지를 위한 실이 삽입된다. 특히 극저온 환경에서 작동하는 산화제펌프와 고온에서 작동하는 터빈 케이싱에는 안정적인 누설방지를 위하여 금속 실이 사용되는데, 금속 실은 높은 초기 체결력을 요하므로 이를 뒷받침할 수 있는 플랜지 및 체결요소의 적절한 구조 설계가 필수적이다. 본 연구에서는 산화제펌프에 사용하는 콘형 실(conical seal) 및 터빈에서 사용하는 금속 평 실(solid metal seal)과 C 실에 대하여 적절한 실 캐비티 및 플랜지 형상을 설계하고, 체결요소의 치수와 수량을 결정하여 건전한 체결 및 운전이 보장될 수 있도록 구조해석을 수행하여 검증하였다.

Keywords

References

  1. Kim, J., Lee, E.S., Choi, C.H. and Jeon, S.M., "Current Status of Turbopump Development in Korea Aerospace Research Institute," International Astronautical Congress(IAC-04-S.P.17), 2004.
  2. Kim, J., Hong, S.S., Jeong, E.H., Choi, C.H. and Jeon, S.M., "Development Status of a Turbopump for 30-ton Thrust Level of Engine," Proceedings of the 2005 Korean Society of Propulsion Engineers Spring Conference, pp. 375-383, 2005.
  3. Kim, J., Hong, S.S., Jeong, E.H., Choi, C.H. and Jeon, S.M., "Development of a Turbopump for a 30 Ton Class Engine," 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA Paper 2007-55516, 2007.
  4. Kim, J. "Status of the Development of Turbopumps in Korea," Journal of the Korean Society of Propulsion Engineers, Vol. 12, No. 5, pp. 73-78, 2008.
  5. Yoon, S.H., Jeon, S.M. and Kim, J., "Burst Test of Volute Casings for Liquid Rocket Turbopump," Journal of Fluid Machinery, Vol. 14, No. 4, pp. 12-18, 2011. https://doi.org/10.5293/KFMA.2011.14.4.012
  6. Yoon, S.H., Jeon, S.M. and Kim, J., "Design and Evaluation of Volute Casings for a Liquid Rocket Turbopump," Proceedings of the 2010 Korean Society of Propulsion Engineers Fall Conference, pp. 775-776, 2010.
  7. Yoon, S.H., Jeon, S.M. and Kim, J., "Structural Analysis and Measurement of Turbopump Casings," Aerospace Engineering and Technology, Vol. 5, No. 2, pp. 174-180, 2006.
  8. "Unfired Pressure Vessels - Part 3: Design," British Standard, BS EN 13445-3:2002, pp. 597-633, 2004.
  9. Huzel, D.K. and Huang, D.H., "Modern Engineering for Design of Liquid-Propellant Rocket Engines," Progress in Astronautics and Aeronautics, Vol. 147, pp. 314-319, 1992.