DOI QR코드

DOI QR Code

Changes in Molecular Weight of Dissolved Organic Matter by Photodegradation and their Subsequent Effects on Disinfection By-Product Formation Potential

광분해에 의한 용존 유기물질의 분자량 변화가 소독부산물 생성능에 미치는 영향

  • Lim, Jung-Hee (Department of Environment & Energy, Sejong University) ;
  • Hur, Jin (Department of Environment & Energy, Sejong University)
  • 임정희 (세종대학교 환경에너지융합학과) ;
  • 허진 (세종대학교 환경에너지융합학과)
  • Received : 2013.05.10
  • Accepted : 2013.10.24
  • Published : 2013.11.30

Abstract

UV-induced transformations in the characteristics of dissolved organic matter (DOM) and the subsequent effects on the disinfection by-product formation potential (DBPFP) were investigated using the mixtures of the two humic substances with different sources, and two different size fractions of Suwannee River fulvic acid (SRFA). 7 day-photodegradation resulted in the decrease of specific ultraviolet absorbance (SUVA) of the mixtures as well as the specific DBPFP. After the irradiation, however, higher specific DBPFP values were consistently observed at the same range of the SUVA values. This suggests that non UV-absorbing components, generated by the UV-irradiation, may contribute to the formation of DBPs. Two different molecular size fractions of SRFA showed dissimilar responses to photodegradation. The behavior was also influenced by the types of the DBPs generated. Higher levels of trihalomethenes (THMs) were formed per organic carbon for the high molecular fraction compared to the low molecular fraction, whereas no differences were found in the formation of haloacetic acids (HAAs) between the two different size fractions. The formation of the two types of DBPs also differed by the irradiation times. Specific formation potential of THMs consistently increased upon the irradiation, whereas HAAs showed the initial increase followed by the decrease in their specific formation potential.

본 연구에서는 두 가지 기원의 표준 휴믹물질 혼합 시료와 Suwannee River fulvic acid (SRFA)을 사용하여 광분해로 인한 용존 유기물질의 스펙트럼 특성 변화와 이에 따른 소독 부산물 생성능의 변화를 조사하였다. 혼합시료의 염소소독부산물 발생잠재력(DBPFP)은 specific UV absorbance (SUVA) 값에 비례하여 증가하였다. 7일간 광분해 후 혼합시료의 SUVA 값은 모두 감소하였다. 그러나 동일 시료에서 DBPFP 값은 SUVA 감소폭보다 적었다. 비록 두 변수 사이에 직선성은 유지되었으나 같은 SUVA 범위 내에서의 DBPFP 값은 오히려 감소하는 경향을 보였다. 이 결과는 광분해로 인해 염소소독부산물 전구체 역할을 하는 비방향족 물질이 생성될 수 있음을 시사하였다. SRFA 시료에 대해 4일과 13일 광분해하여 각각 저분자와 고분자 부분에서의 DBPFP 값을 비교한 결과 광분해 후 유기탄소 당 염소소독부산물 발생량 변화양상은 염소소독부산물 종류에 따라 다르게 나타났다. 유기탄소 당 trihalomethenes (THMs) 발생은 광분해 후 고분자 부분에서 더 높았으나 haloacetic acids(HAAs)의 경우 고분자와 저분자 부분 사이의 유의한 차이가 관찰되지 않았다. 광분해 시간에 따른 유기탄소 당 DBPFP 값 변화 패턴도 용존 유기물 분자량에 따라 다르게 나타났다. THMs의 경우 고분자 부분에서는 광분해 시간에 따라 증가하는 경향을 보였으나 저분자에서는 큰 변화를 보이지 않았다. 반면 HAAs은 고분자에서 지속적인 감소 경향을, 저분자 부분에서는 증가 후 다시 감소하는 경향을 보였다. 본 연구결과 수중 유기물질은 전반적으로 광분해에 따라 소독부산물 생성능이 초기에 오히려 증가할 수 있으며 광분해 시간이 충분히 지속된 후에야 감소함을 보여주었다.

Keywords

References

  1. Ma, X. D. and Ali, N., "Detection of a DNA-like materials in Suwannee River Fulvic Acid. In: Wu, F. C. and Xing, B. (eds) Natural organic matter and its significance in the environment," Science Press, Beijing, pp. 66-89(2009).
  2. Thurman, E. M., "Organic Geochemistry of Natural Waters. Martinus Nijhoff/Junk Publisher, Nordrecht, The Netherlands,"(1985).
  3. Kitis, M., Karanfil, T. and James E., "The Reactivity of Dissolved Organic Matter for Disinfection By-Product Formation," Turkish J. Eng. Environ. Sci., 28, 167-179(2004).
  4. Bull, R. J., Krasner, S., Daniel, P. and Bull., R. D., "Health effects and occurrence of disinfection by-products," AWWA Research foundation and American Water Works Association, Denver, Colorado(2001).
  5. Chellam, S., "Effects of Nanofiltration on Trihalomethane and Haloacetic Acid Precursor Removal and Speciation in Waters Containing Low Concentrations of Bromide Ion," Environ. Sci. Technol., 34(9), 1813-1820(2000). https://doi.org/10.1021/es991153t
  6. Chow, A. T., Guo, F., Gao, S., Breuer, R. and Dahlgren, R. A., "Filter pore size selection for characterizing dissolved organic carbon and trihalomethane precursors from soils," Water Res., 39(7), 1255-1264(2005). https://doi.org/10.1016/j.watres.2005.01.004
  7. Leenheer, J. A. and Croue, J. P. "Characterizing Aquatic Dissolved Organic Matter," Environ. Sci. Technol., 37(1), 18A-26A(2003). https://doi.org/10.1021/es032333c
  8. McDonald, S., Bishop, A. G., Prenzler, P. D. and Robards, K., "Analytical chemistry of freshwater humic substances," Anal. Chim. Acta, 527, 105-124(2004). https://doi.org/10.1016/j.aca.2004.10.011
  9. Weishaar, J. L., Aiken, G. R. Bergamaschi, B. A., Fram, M. S., Fujii, R. and Mopper, K., "Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon," Environ. Sci. Technol., 37, 4702-4708(2003). https://doi.org/10.1021/es030360x
  10. Chow, A. T., Dahlgren, R., Gao, S. and Guo, F., "Relationships between Specific UV Absorbance and Trihalomethane Precursors from Water Sources of the Sacramento-San Joaquin Delta, California," Water Qual. Symposium Proc., (2004).
  11. Atesa, N., Kitis, M. and Yetis, U., "Formation of chlorination by-products in waters with low SUVA-correlations with SUVA and differential UV spectroscopy," Water Res., 41, 4139-4148(2007). https://doi.org/10.1016/j.watres.2007.05.042
  12. Mostofa, K. M. G., Liu, C., Minakata, D., Wu, F., Vione, D., Morraleb, M., Yoshioka, T. and Sakugawa, H., "Photoinduced and Microbial Degradation of Dissolved Organic Matter in Natural Waters," Photobiogeochem. Org. Matter., 273-364(2013).
  13. Moran, M. A. and Sheldon, W. M., "Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter," Limnol. Oceanogr., 45(6), 1254-1264(2000). https://doi.org/10.4319/lo.2000.45.6.1254
  14. Chow, A. T., Leech, D. M., Boyer, T. H., Singer, P. C., "Impact of Simulated Solar Irradiation on Disinfection Byproduct Precursors," Environ. Sci. Technol., 42(15), 5586-5593(2008). https://doi.org/10.1021/es800206h
  15. Chow, A., Diaz, F. J., Wong, K.-H., O'Geen, A. T., Dahlgren, R. A. and Wong, P.-K., "Photochemical and bacterial transformations of disinfection by-product precursors in water," J. Environ. Qual., 42, 1589-1595(2013). https://doi.org/10.2134/jeq2013.01.0022
  16. Diaz, F. J., Chow, A. T., O'Geen, A. T., Dahlgren, R. A. and Wong, P.-K, "Restored wetlands as a source of disinfection byproduct precursors," Environ. Sci. Technol., 42, 5992-5997(2008). https://doi.org/10.1021/es800781n
  17. Zhao, Q., Liu, S., Deng, L., Dong, S., Wang, C., Yang, Z. and Yang, J., "Landscape change and hydrologic alteration associated with dam construction," Int. J. Appl. Earth Obs., 16, 17-26(2012). https://doi.org/10.1016/j.jag.2011.11.009
  18. Schwede-Thomas, S. B., Chin, Y.-P., Dria, K. J., Hatcher, P., Kaiser, E. and Sulzberger, B., "Characterizing the properties of dissolved organic matter isolated by XAD and C-18 solid phase extraction and ultrafilation," Aquat. Sci., 76, 61-71(2005).
  19. Park, M. H., Hur, J. and Jang, G. J., "Characterizing fluorescence properties of sized fractiotions of a soil leachate and a treated sewage" Proc. Kor. Soc. Environ. Eng., pp. 1152-1159(2007).
  20. Helms J. R., Stubbins A., Ritchie. J. D., Minor. E. C. and Kieber, D. J. and Mopper. K. "Absorption spectral slopes and slope ratio as indicators of molecular weight, source and photobleaching of chromophoric dissolved organic matter," Limnol. Oceanogr., 53(3), 995-969(2008).
  21. Bond, T., Goslan, E. H., Parsons, S. A. and Jefferson, B., "Disinfection by-product formation of natural organic matter surrogates and treatment by coagulation, $MIEX^{(R)}$ and nanofiltration," Water Res., 44(5), 1645-1653(2010). https://doi.org/10.1016/j.watres.2009.11.018
  22. Nguyen, H. V.-M. Lee, M., Hur, J. and Schlautman, M. A., "Variations in spectroscopic characteristics and disinfection byproduct formation potentials of dissolved organic matter for two contrasting storm events," J. Hydro., 481, 132-142 (2013). https://doi.org/10.1016/j.jhydrol.2012.12.044
  23. Hur, J., Jung, K.-Y. and Jung, Y.-M., "Characterization of spectral responses of humic substances upon UV irradiation using two-dimensional correlation spectroscopy," Water Res., 45, 2965-2974(2011). https://doi.org/10.1016/j.watres.2011.03.013
  24. Lou, T. and Xie, H., "Photochemical alteration of the molecular weight of dissolved organic matter," Chemosphere, 65 (11), 2333-2342(2006). https://doi.org/10.1016/j.chemosphere.2006.05.001
  25. Chang, E. E., Chinang, P.-C., Ko, Y.-W. and Lan, W.-H., "Characteristics of organic precursors and their relationship with disinfection by-products," Chemosphere, 44, 1231-1236 (2001). https://doi.org/10.1016/S0045-6535(00)00499-9
  26. Zhao, Z. Y., Gu, J. D., Fan, X. J. and Li, H. B., "Molecular size distribution of dissolved organic matter in water of the Pearl River and trihalomethane formation characteristics with chlorine and chlorine dioxide treatments," J. Hazard. Mater., 134, 60-66(2006). https://doi.org/10.1016/j.jhazmat.2005.10.032
  27. Kitis, M., Karanfil, T., Wigton, A. and Kilduff, J. E., "Probing reactivity of dissolved organic matter for disinfection by-product formation using XAD-8 resin adsorption and ultrafiltration fractionation," Water Res., 36, 3834-3848(2002). https://doi.org/10.1016/S0043-1354(02)00094-5

Cited by

  1. Fluorescence Analysis of Dissolved Organic Matter Released from Sediment of Yeongsan River vol.40, pp.9, 2018, https://doi.org/10.4491/KSEE.2018.40.9.350