DOI QR코드

DOI QR Code

An Electrochemical Approach for Fabricating Organic Thin Film Photoelectrodes Consisting of Gold Nanoparticles and Polythiophene

  • Takahashi, Yukina (Department of Applied Chemistry, Kyushu University) ;
  • Umino, Hidehisa (Department of Materials Physics and Chemistry, Kyushu University) ;
  • Taura, Sakiko (Department of Materials Physics and Chemistry, Kyushu University) ;
  • Yamada, Sunao (Department of Applied Chemistry, Kyushu University)
  • Received : 2013.10.22
  • Accepted : 2013.12.20
  • Published : 2013.09.01

Abstract

A novel method of fabricating polythiophene-gold nanoparticle composite film electrodes for photoelectric conversion is demonstrated. The method includes electrodeposition of gold and electropolymerization of 2,2'-bithiophene onto an indium-tin-oxide (ITO) electrode. First, electrodeposition of gold onto the ITO electrode was carried out with various repetition times of pulsed applied potential (0.25 s at -2.0 V vs. Ag/AgCl) in an aqueous solution of $HAuCl_4$. Significant progress of the number density of deposited gold nanoparticles was confirmed from scanning electron micrographs, from 4 (1 time) to 25% (15 times). Next, electropolymerization of 2,2'-bithiophene onto the above ITO electrode was performed under controlled charge condition (+1.4 V vs. Ag wire, 15 $mC/cm^2$). Structural characterization of as-fabricated films were carried out by spectroscopic and electron micrographic methods. Photocurrent responses from the sample film electrodes were investigated in the presence of electron acceptors (methyl viologen and oxygen). Photocurrent intensities increased with increasing the density of deposited gold nanoparticles up to ~10%, and tended to decrease above it. It suggests that the surplus gold nanoparticles exhibit quenching effects rather than enhancement effects based on localized electric fields induced by surface plasmon resonance of the deposited gold nanoparticles.

Keywords

References

  1. Tang, C. W. Appl. Phys. Lett. 1986, 48, 183-185. https://doi.org/10.1063/1.96937
  2. Hiramoto, M.; Fujiwara, H.; Yokoyama, M. Appl. Phys. Lett. 1991, 58, 1062-1064. https://doi.org/10.1063/1.104423
  3. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789-1791. https://doi.org/10.1126/science.270.5243.1789
  4. Hoppe, H.; Sariciftci, N. S. J. Mater. Res. 2004, 19, 1924-1925. https://doi.org/10.1557/JMR.2004.0252
  5. Luber, E. J.; Buriak, J. M. ACS NANO 2013, 6, 4708-4714.
  6. Gan, Q.; bartoli, F. J.; Kafafi, Z. H. Adv. Mater. 2013, 25, 2385-2396, and references cited are herein. https://doi.org/10.1002/adma.201203323
  7. Berson, S.; de Bettignies, R.; Bailly S.; Guillerez, S. Adv. Funct. Mater. 2007, 17, 1377-1384. https://doi.org/10.1002/adfm.200600922
  8. Roncali, J. Chem. Rev. 1992, 92, 711-738. https://doi.org/10.1021/cr00012a009
  9. Takechi, K.; Shiga, T.; Motohiro, T.; Akiyama, T.; Yamada, S.; Nakayama, H.; Kohama, K. Sol. Energy Mater. Sol. Cells 2006, 90, 1322-1330. https://doi.org/10.1016/j.solmat.2005.08.010
  10. Akiyama, T.; Nakada, M.; Terasaki, N.; Yamada, S. Chem. Commun. 2006, 395-397.
  11. Arakawa, T.; Munaoka, T.; Akiyama, T.; Yamada, S. J. Phys. Chem. C 2009, 113, 11830-11835. https://doi.org/10.1021/jp9018525
  12. Takahashi, Y.; Taura, S.; Akiyama, T.; Yamada, S. Langmuir 2012, 28, 9155-9160. https://doi.org/10.1021/la300227j
  13. Leonard, K.; Takahashi, Y.; You, J.; Yonemura, H.; Kurawaki, J.; Yamada, S. Chem. Phys. Lett. 2013, 584, 130-134. https://doi.org/10.1016/j.cplett.2013.08.022
  14. Lu, L.; Luo, Z.; Xu, T.; Yu, L. NANO Lett. 2013, 13, 59-64. https://doi.org/10.1021/nl3034398
  15. Luther, J. M.; Blackburn, J. L. Nature Photonics 2013, 7, 675-677. https://doi.org/10.1038/nphoton.2013.218
  16. Matsumoto, R.; Yonemura, H.; Yamada, S. J. Phys. Chem. C 2012, 117, 2486-2493.

Cited by

  1. Vibrational Spectroscopic Studies on the Formation Processes and Characteristics of Octadecanethiol Monolayers on the Surfaces of Gold Nanoparticles vol.40, pp.3, 2015, https://doi.org/10.14723/tmrsj.40.253
  2. Enhanced Photoelectrochemical Response of Polythiophene Photoelectrodes with Controlled Arrays of Silver Nanocubes vol.119, pp.16, 2015, https://doi.org/10.1021/jp5114366