DOI QR코드

DOI QR Code

Model-based Diagnosis for Crack in a Gear of Wind Turbine Gearbox

풍력터빈 기어박스 내의 기어균열에 대한 모델 기반 고장진단

  • Leem, Sang Hyuck (Department of Aerospace & Mechanical Engineering, Korea Aerospace University) ;
  • Park, Sung Hoon (Department of Aerospace & Mechanical Engineering, Korea Aerospace University) ;
  • Choi, Joo Ho (School of Aerospace & Mechanical Engineering, Korea Aerospace University)
  • 임상혁 (한국항공대학교 항공우주 및 기계공학과) ;
  • 박성훈 (한국항공대학교 항공우주 및 기계공학과) ;
  • 최주호 (한국항공대학교 항공우주 및 기계공학부)
  • Received : 2013.10.30
  • Accepted : 2013.11.28
  • Published : 2013.12.31

Abstract

A model-based method is proposed to diagnose the gear crack in the gearbox under variable loading condition with the objective to apply it to the wind turbine CMS(Condition Monitoring System). A simple test bed is installed to illustrate the approach, which consists of motors and a pair of spur gears. A crack is imbedded at the tooth root of a gear. Tachometer-based order analysis, being independent on the shaft speed, is employed as a signal processing technique to identify the crack through the impulsive change and the kurtosis. Lumped parameter dynamic model is used to simulate the operation of the test bed. In the model, the parameter related with the crack is inversely estimated by minimizing the difference between the simulated and measured features. In order to illustrate the validation of the method, a simulated signal with a specified parameter is virtually generated from the model, assuming it as the measured signal. Then the parameter is inversely estimated based on the proposed method. The result agrees with the previously specified parameter value, which verifies that the algorithm works successfully. Application to the real crack in the test bed will be addressed in the next study.

모델기반 고장 진단법은 풍력발전기의 상태감지 시스템(Condition monitoring system)에 적용을 목적으로 변동 하중조건하에서 작동하는 기어박스내의 기어의 균열을 진단하기 위해 제시하였다. 두 개의 평기어(Spur gear)로 구성된 간단한 테스트 베드가 위의 접근방법을 검증하기 위해 구축되었고, 기어의 균열은 기어의 뿌리부분에 균열을 인가하여 묘사하였다. 축의 회전속도에 독립적인 타코미터를 기반으로 한 오더분석(Order analysis)을 균열크기 진단에 적용하였고, 테스트 베드의 작동을 시뮬레이션하기 위해 집중변수 모델(Lumped parameter dynamic model)이 사용되었다. 모델에서 균열과 밀접히 관련된 변수는 측정된 신호와 시뮬레이션된 신호 간의 차이를 최소화하는 최적화 기법으로 역추정하였다. 제시한 방법의 유효성을 보이기 위해, 미리 정의된 모델 변수로부터 생성된 시뮬레이션 신호를 테스트-베드로부터 측정된 신호로 가정하고, 제시한 방법을 사용하여 변수를 역추정하였다. 결과는 실제 값과 일치하였고, 이를 통해 알고리즘이 제대로 작동함을 알 수 있었다. 다음 연구에서는 실제 테스트 베드의 실제균열에 적용하고자 한다.

Keywords

References

  1. Bartelmus, W., Zimroz, R. (2009) A New Feature for Monitoring the Condition of Gearboxes in Non-stationary Operating Conditions, Mechanical Systems and Signal Processing, 23(5), pp.1528-1534. https://doi.org/10.1016/j.ymssp.2009.01.014
  2. Baydar, N., Ball, A. (2000) Detection of Gear Deterioration Under Varying Load Conditions By Using the Instantaneous Power Spectrum, Mechanical Systems and Signal Processing, 14(6), pp.907-921. https://doi.org/10.1006/mssp.1999.1281
  3. Begg, C.D., Byington, C.S., Maynard, K.P. (2000) Dynamic Simulation of Mechanical Fault Transition, Proc 54th Meeting of the Society for Machinery Failure Prevention Technology, Virginia Beach, VA, 1-4, pp.203-212.
  4. Crabtree, C.J. (2011) Condition Monitoring Techniques for Wind Turbines, PhD Thesis, Durham University, UK.
  5. Endo, H., Randall, R.B., Gosselin, C. (2009) Differential Diagnosis of Spall vs. Cracks in the Gear Tooth Fillet Region: Experimental Validation, Mechanical Systems and Signal Processing, 23 pp.636-651. https://doi.org/10.1016/j.ymssp.2008.08.015
  6. Guicai Zhang and Joshua Isom (2011) Gearbox Vibration Source Separation by Integration of Time Synchronous Averaged Signals, Annual Conference of the Prognostics and Health Management Society.
  7. Li, C.J., Lee, H., Choi, S.H. (2002) Estimating Size of Gear Tooth Root Crack Using Embedded Modelling, Mechanical Systems and Signal Processing, 16(5), pp.841-852. https://doi.org/10.1006/mssp.2001.1452
  8. Litak, G., Friswell, M.I. (2005) Dynamics of a Gear System with Faults in Meshing Stiffness, Nonlinear Dynamics, 41(4), pp.415-421. https://doi.org/10.1007/s11071-005-1398-y
  9. Nilsson, J., Bertling, L.M. (2007) Survey of Failures in Wind Power Systems with Focus on Swedish Wind Power Plant During 1997-2005, IEEE Transactions on Energy Conversion, pp.167-173.
  10. Poore, R., Global, C., Concepts, E. (2008) Development of an Operations and Maintenance Cost Model to Identify Cost of Energy Savings for Low Wind Speed Turbines, National Renewable Energy Laboratory.
  11. Ralph A. Wiggins (1978) Minimum Entropy Deconvolution, Geoexploration, 16, pp.21-35. https://doi.org/10.1016/0016-7142(78)90005-4
  12. Randall, R.B. (2011) Vibration-based Condition Monitoring, WILEY, p.40.
  13. Stander, C.J. Heyns, P.S. (2005) Instantaneous Angular Speed Monitoring of Gearboxes under Non-cyclic Stationary Load Conditions, Mechanical Systems and Signal Processing, 19(4), pp.817-835. https://doi.org/10.1016/j.ymssp.2004.10.006
  14. Stander, C.J., Heyns, P.S., Schoombie, W. (2002) Using Vibration Monitoring for Local Fault Detection on Gears Operating Under Fluctuating Load Conditions, Mechanical Systems and Signal Processing, 16(6), pp.1005-1024. https://doi.org/10.1006/mssp.2002.1479
  15. Tuma, J. (2003) Phase Demodulation of Impulse Signals in Machine Shaft Angular Vibration Measurements, Proceedings of Tenth International Congress on Sound and Vibration (ICSV10), pp.5005-5012.
  16. Walha, L., Fakhfakh, T., Haddar, M. (2009) Nonlinear Dynamics of a Two-stage Gear System with Mesh Stiffness Fluctuation, Bearing Flexibility and Backlash, Mechanism and Machine Theory, 44(5), pp.1058-1069. https://doi.org/10.1016/j.mechmachtheory.2008.05.008
  17. Wenyi Wang and Albert K. Wong. (2000) A Model-Based Gear Diagnostic Technique, Defence Science and Technology Organization, DSTOO-TR-1079.
  18. Zhan, Y., Makis, V., Jardine, A.K.S. (2006) Adaptive State Detection of Gearboxes under Varying Load Conditions Based on Parametric Modelling, Mechanical Systems and Signal Processing, 20(1), pp.188-221. https://doi.org/10.1016/j.ymssp.2004.08.004