DOI QR코드

DOI QR Code

Antioxidant Enzymes and Photosynthetic Responses to Drought Stress of Three Canna edulis Cultivars

  • Zhang, Wen-E (College of Horticulture, Northwest A&F University) ;
  • Wang, Fei (College of Horticulture, Northwest A&F University) ;
  • Pan, Xue-Jun (College of Agriculture, Guizhou University) ;
  • Tian, Zhi-Guo (College of Horticulture, Northwest A&F University) ;
  • Zhao, Xiu-Ming (College of Horticulture, Northwest A&F University)
  • Received : 2013.03.18
  • Accepted : 2013.07.03
  • Published : 2013.12.31

Abstract

Edible canna is a productive starch source in some tropical and semitropical regions. In these regions, water deficit stress is one of factors that limit the crop yield. In the present study, we investigated seven physiological indexes and photosynthetic responses of three edible canna (Canna edulis Ker.) cultivars ('PLRF', 'Xingyu-1', and 'Xingyu-2') under 35 days drought stress. Our results indicated that drought treatment caused visible wilting symptoms in all cultivars, especially in 'Xingyu-1'. Coupled with the increase of wilting symptoms, relative water content (RWC) and chlorophyll content decreased progressively, malondialdehyde (MDA) content gradually increased, and key antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) activities increased first and then decreased in all three cultivars. The effect of water stress was more pronounced in 'Xingyu-1' than in 'PLRF' and 'Xingyu-2', and in lower leaves than in upper leaves. In addition, 35 days drought stress also significantly reduced the photosynthetic capacity. Consistent with antioxidant parameters, photosynthetic changes of 'Xingyu-2' were less than those of the other cultivars under water deficit stress. Drought stress caused a significant increase of water use efficiency (WUE) in 'Xingyu-2', but little in 'PLRF', and obvious decrease in 'Xingyu-1'. These results indicated that 'Xingyu-2' was more tolerant to drought stress than 'PLRF' and 'Xingyu-1' by maintaining lower lipid peroxidation and higher antioxidant enzyme activities.

Keywords

References

  1. Adhanom, G.T., R.J. Strirzaker, S.A. Lorentz, J.G. Annandale, and J.M. Steyn. 2012. Comparison of methods for determining unsaturated hydraulic conductivity in the wet range to evaluate the sensitivity of wetting front detectors. Water SA 38:67-75.
  2. Ahmed, C.B., B.B. Rouina, S. Sensoy, M. Boukhris, and F.B. Abdallah. 2009. Changes in gas exchange, proline accumulation and antioxidative enzyme activities in three olive cultivars under contrasting water availability regimes. Environ. Exp. Bot. 67:345-352. https://doi.org/10.1016/j.envexpbot.2009.07.006
  3. Basu, S., A. Roychoudhury, P.P. Saha, and D.N. Sengupta. 2010. Differential antioxidative responses of indica rice cultivars to drought stress. Plant Growth Regul. 60:51-59. https://doi.org/10.1007/s10725-009-9418-4
  4. Boyer, J.S. 1982. Plant productivity and environment. Science 218:443-448. https://doi.org/10.1126/science.218.4571.443
  5. Chance, B. and A.C. Maehly. 1955. Assay of catalase and perxoidase, p. 764-775. In: S.P. Colowick and N.O. Kaplan (eds.). Methods in enzymology. Academic Press, New York.
  6. Chaves, M.M. 1991. Effects of water deficits on carbon assimilation. J. Exp. Bot. 42:1-16. https://doi.org/10.1093/jxb/42.1.1
  7. Chaves, M.M. and M.M. Oliveira. 2004. Mechanisms underlying plant resilience to water deficits: Prospects for water-saving agriculture. J. Exp. Bot. 55:2365-2384. https://doi.org/10.1093/jxb/erh269
  8. Cornic, G. 1994. Drought stress and high light effects on leaf photosynthesis, p. 297-313. In: N.R. Baker and J.R. Bowyer (eds.). Photoinhibition of photosynthesis from molecular mechanisms to the field. BIOS Scientific Publishers, Oxford.
  9. Elsheery, N.I. and K.F. Cao. 2008. Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. Acta Physiol. Plant. 30:769-777. https://doi.org/10.1007/s11738-008-0179-x
  10. Ennahli, S. and H.J. Earl. 2005. Physiological limitations to photosynthetic carbon assimilation in cotton under water stress. Crop Sci. 45:2374-2382. https://doi.org/10.2135/cropsci2005.0147
  11. Farooq, M., A. Wahid, N. Kobayashi, D. Fujita, and S.M.A. Basra. 2009. Plant drought stress: Effects, mechanisms and management. Agron. Sustain Dev. 29:185-212. https://doi.org/10.1051/agro:2008021
  12. Foyer, C.H., M. Lelandais, and K.J. Kunert. 1994. Photooxidative stress in plants. Plant Physiol. 92:696-717. https://doi.org/10.1111/j.1399-3054.1994.tb03042.x
  13. Giannopolities, C.H. and S.K. Ries. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol. 59:309-314. https://doi.org/10.1104/pp.59.2.309
  14. Gobin, A. 2012. Impact of heat and drought stress on arable crop production in Belgium. Nat. Hazards Earth Syst. Sci. 12:1911-1922. https://doi.org/10.5194/nhess-12-1911-2012
  15. Grassi, G. and F. Magnani. 2005. Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ. 28:834-849. https://doi.org/10.1111/j.1365-3040.2005.01333.x
  16. Guo, Z., W. Ou, S. Lu, and Q. Zhong. 2006. Differential responses of antioxidative system to chilling and drought in four rice cultivars differing in sensitivity. Plant Physiol. Biochem. 44: 828-836. https://doi.org/10.1016/j.plaphy.2006.10.024
  17. Habibi, G. 2012. Exogenous salicylic acid alleviates oxidative damage of barley plants under drought stress. Acta Biologica Szegediensis 56:57-63.
  18. Han, G., Q. Dang, and Z. Zhao. 2010. Responses of antioxidation protective system of Caragana korshinskii Kom. to drought stress. Acta Agrestia Sinica 18:528-532.
  19. Heath, R.L. and L. Packer. 1968. Photoperoxidation in isolated chloroplast I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem. Biophys. 25:189-198.
  20. Jones, H.G. and J.E. Corlett. 1992. Current topics in drought physiology. J. Agric. Sci. 119:291-296. https://doi.org/10.1017/S0021859600012144
  21. Kato, M. and K. Imai. 1996. Studies on matter production of edible canna (Canna edulis Ker.). IV. Leaf unrolling and changes in leaf photosynthetic rates with growth under field conditions. Japan. J. Crop Sci. 65:253-259. https://doi.org/10.1626/jcs.65.253
  22. Lares, M. and E. Perez. 2006. Determination of the mineral fraction and rheological properties of microwave modified starch from Canna Edulis. Plant Food Hum. Nutr. 61:109-113. https://doi.org/10.1007/s11130-006-0007-7
  23. Lawlor, D.W. 1995. The effects of water deficit on photosynthesis, p. 129-160. In: N. Smirnoff (ed.). Environment and plant metabolism. Flexibility and acclimation. BIOS Scientific Publishers, Oxford.
  24. Li, F., X.Y. Qin, Y.H. Xie, X.S. Chen, J.Y. Hu, Y.Y. Liu, and Z.Y. Hou. 2013. Physiological mechanisms for plant distribution pattern: Responses to flooding and drought in three wetland plants from Dongting Lake, China. Limnology 14:71-76. https://doi.org/10.1007/s10201-012-0386-4
  25. Li, L., N.H. Li, S.M. Jiang, J.Y. Leng, and X.J. Wang. 2009. Plant physiology module test guidance. Science Press, Beijing.
  26. Lichtenthaler, H.K. and A.R. Wellburn. 1983. Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 603:591-592.
  27. Lii, C.Y. and Y.H. Chang. 1991. Study of starch in Taiwan. Food Rev. Inter. 7:185-203. https://doi.org/10.1080/87559129109540907
  28. Loggini, B.A., Scartazza, E. Brugnoli, and F. Navazari-Izzo. 1999. Antioxidative defense system, pigment composition, and photo-synthetic efficiency in two wheat cultivars subjected to drought. Plant Physiol. 119:1091-1099. https://doi.org/10.1104/pp.119.3.1091
  29. Mafakheri, A., A. Siosemardeh, B. Bahramnejad, P.C. Struik, and E. Sohrabi. 2010. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Austr. J. Crop Sci. 4:580-585.
  30. Mathur, P.B., M.J. Devi, V. Vadez, and K.K. Sharma. 2009. Differential antioxidative responses in transgenic peanut bear no relationship to their superior transpiration efficiency under drought stress. J. Plant Physiol. 166:1207-1217. https://doi.org/10.1016/j.jplph.2009.01.001
  31. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7:405-410. https://doi.org/10.1016/S1360-1385(02)02312-9
  32. Moorthy, S.N., B. Vimala, and A. Mukherjee. 2002. Physicochemical and functional properties of Canna edulis starch. Trop. Sci. 42:75-77.
  33. Moran, J.F., M. Becana, I. Iturbe-Ormaetxe, S. Frechilla, R.V. Klucas, and P. Aparicio-Tejo. 1994. Drought induces oxidative stress in pea plants. Planta 194:346-352.
  34. Ozkur, O., F. Ozdemir, M. Bor, and I. Turkan. 2009. Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought. Environ. Exp. Bot. 66:487-492. https://doi.org/10.1016/j.envexpbot.2009.04.003
  35. Pan, X.J., D.Y. Li, and W.E. Zhang. 2011. Photosynthesis characteristics of wild Vitis species native in Guizhou Province. J. Plant Genet. Resources 12:145-149.
  36. Parkin, K.L., A. Marangoni, R. Jackman, R. Yada, and D. Stanley. 1989. Chilling injury. A review of possible mechanisms. J. Food Biochem. 13:127-153. https://doi.org/10.1111/j.1745-4514.1989.tb00389.x
  37. Perez, E. and M. Lares. 2005. Chemical composition, mineral profile, and functional properties of canna (Canna edulis) and arrowroot (Maranta spp.) starches. Plant Foods Hum. Nutr. 60:113-116. https://doi.org/10.1007/s11130-005-6838-9
  38. Perez, E., M. Lares, and Z. Gonzalez. 1997. Some characteristics of Sagu (Canna edulis Ker.) and Zulu (Maranta sp.) rhizomes. J. Agric. Food Chem. 45:2546-2549. https://doi.org/10.1021/jf960680i
  39. Perez, E., W.M. Breene, and Y.A. Bahnassey. 1998. Gelatinization profiles of Peruvian carrot, cocoyam and potato starches as measured with the Brabender viscoamylograph, rapid viscoanalyzer, and differential scanning calorimeter. Starch 50:14-16. https://doi.org/10.1002/(SICI)1521-379X(199801)50:1<14::AID-STAR14>3.0.CO;2-P
  40. Sairam, R.K., G.C. Srivastava, and D.C. Saxena. 2000. Increased antioxidant activity under elevated temperatures: A mechanism of heat stress tolerance in wheat genotypes. Biol. Plant. 43: 245-251. https://doi.org/10.1023/A:1002756311146
  41. Sanchez-Rodriguez, E., M. Rubio-Wilhelmi, M. Cervilla, B. Blasco, J.J. Rios, M.A. Rosales, L. Romero, and J.M. Ruiz. 2010. Genotypic differences in some physiological parameters symptomatic for oxidative stress under moderate drought in tomato plants. Plant Sci. 178:30-40. https://doi.org/10.1016/j.plantsci.2009.10.001
  42. Simova-Stoilova, L., K. Demirevska, T. Petrova, N. Tsenov, and U. Feller. 2009. Antioxidative protection and proteolytic activity in tolerant and sensitive wheat (Triticuma estivum L.) varieties subjected to long-term field drought. Plant Growth Regul. 58:107-117. https://doi.org/10.1007/s10725-008-9356-6
  43. Singh, B.K., S.R. Sharma, and B. Singh. 2010. Antioxidant enzymes in cabbage: Variability and inheritance of superoxide dismutase, peroxidase and catalase. Sci. Hort. 124:9-13. https://doi.org/10.1016/j.scienta.2009.12.011
  44. Sriroth, K., K. Piyachomkwan, S. Jin, and C.G. Oates. 2001. Canna starch: Properties, processing and utilization. In 52th Starch Convention. Association of Cereal Research. April 25-27, 2001, Detmold, Germany.
  45. Talebi, R. 2009. Effective selection criteria for assessing drought stress tolerance in durum wheat (Triticum durum Desf.). Gen. Appl. Plant Physiol. 35:64-74.
  46. Thitipraphunkul, K., D. Uttapap, K. Piyachomkwan, and Y. Takeda. 2003a. A comparative study of edible canna (Canna edulis) starch from different cultivars. Part I. Chemical composition and physicochemical properties. Carbohydr. Polym. 53:317-324. https://doi.org/10.1016/S0144-8617(03)00081-X
  47. Thitipraphunkul, K., D. Uttapap, K. Piyachomkwan, and Y. Takeda. 2003b. A comparative study of edible canna (Canna edulis) starch from different cultivars. Part II. Molecular structure of amylase and amylopectin. Carbohydr. Polym. 54:489-498. https://doi.org/10.1016/j.carbpol.2003.08.003
  48. Tian Z.G., F. Wang, W.E. Zhang, C.M. Liu, and X.M. Zhao. 2012. Antioxidant mechanism and lipid peroxidation in leaves and petals of Marigold in response to drought stress. Hort. Environ. Biotechnol. 53:183-192. https://doi.org/10.1007/s13580-012-0069-4
  49. Turkan, I., M. Bor, F. Ozdemir, and H. Koca. 2005. Differential responses of lipid peroxidation and antioxidants in the leaves of drought tolerant P. acutifolius Gray and drought sensitive P. vulgaris L. subjected to PEG mediated water stress. Plant Sci. 168:223-231. https://doi.org/10.1016/j.plantsci.2004.07.032
  50. van Rensburg, L. and G.H.J. Kruger. 1994. Evaluation of components of oxidative stress metabolism for use in selection of drought tolerant cultivars of Nicotiana tabacum L. J. Plant Physiol. 143:730-737. https://doi.org/10.1016/S0176-1617(11)81166-1
  51. Wang, C.Q. and R.C. Li. 2008. Enhancement of superoxide dismutase activity in the leaves of white clover (Trifolium repens L.) in response to polyethylene glycol-induced water stress. Acta Physiol. Plant. 30:841-847. https://doi.org/10.1007/s11738-008-0189-8
  52. Weatherley, P.E. 1950. Studies in the water relations of the cotton plants. I. The field measurements of water deficits in leaves. New Phytol. 49: 81-87. https://doi.org/10.1111/j.1469-8137.1950.tb05146.x
  53. Wootton, M. and M. Bamunuarachchi. 1978. Water binding capacity of commercial produced native and modified starches. Starch 30:306-309. https://doi.org/10.1002/star.19780300905
  54. Wu, T.X., K.C. Zhang, and C.Z. Liu. 2005. Study on the property of Canna edulis Ker. its application in ethanol fermentation. Liquor-making Sci. Tech. 136:40-42.
  55. Xiao, X.W., F. Yang, S. Zhang, H. Korpelainen, and C.Y. Li. 2009. Physiological and proteomic responses of two contrasting Populus cathayana populations to drought stress. Physiol. Plant. 136:150-168. https://doi.org/10.1111/j.1399-3054.2009.01222.x
  56. Xue, Y.F. and Z.P. Liu. 2008. Antioxidant enzymes and physiological characteristics in two Jerusalem artichoke cultivars under salt stress. Russ. J. Plant Physiol. 55:776-781. https://doi.org/10.1134/S102144370806006X
  57. Yang, Y., C. Han, Q. Liu, B. Lin, and J. Wang. 2008. Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiol. Plant. 30: 433-440. https://doi.org/10.1007/s11738-008-0140-z
  58. Yun, Y.S., M. Satake, S. Katsuki, and A. Kunugi. 2004. Phenylpropanoid derivatives from edible canna, Canna edulis. Phytochemistry 65:2167-2171. https://doi.org/10.1016/j.phytochem.2004.06.003
  59. Zhang, M.D., Q. Chen, and S.H. Shen. 2011. Physiological responses of two Jerusalem artichoke cultivars to drought stress induced by polyethylene glycol. Acta Physiol. Plant. 33:313-318. https://doi.org/10.1007/s11738-010-0549-z
  60. Zhang, W.E., Z.G. Tian, X,J. Pan, X.M. Zhao, and F. Wang. 2013. Oxidative stress and non-enzymatic antioxidants in leaves of three edible canna cultivars under drought stress. Hort. Environ. Biotechnol. 54:1-8. https://doi.org/10.1007/s13580-013-0070-6
  61. Zhao, H.J. and J.F. Tan. 2005. Role of calcium ion in protection against heat and high irradiance stress-induced oxidative damage to photosynthesis of wheat leaves. Photosynthetica 43:473-476. https://doi.org/10.1007/s11099-005-0076-0