DOI QR코드

DOI QR Code

Chilling Requirement for Breaking of Internal Dormancy of Main Apple Cultivars in Korea

국내 사과 주요 품종들의 자발휴면 타파에 필요한 저온요구도

  • Kweon, Hun-Joong (Apple Research Station, National Institute of Horticulture & Herbal Science, Rural Development Administration) ;
  • Sagong, Dong-Hoon (Apple Research Station, National Institute of Horticulture & Herbal Science, Rural Development Administration) ;
  • Song, Yang-Yik (Apple Research Station, National Institute of Horticulture & Herbal Science, Rural Development Administration) ;
  • Park, Moo-Yong (Apple Research Station, National Institute of Horticulture & Herbal Science, Rural Development Administration) ;
  • Kwon, Soon-Il (Apple Research Station, National Institute of Horticulture & Herbal Science, Rural Development Administration) ;
  • Kim, Mok-Jong (Apple Research Station, National Institute of Horticulture & Herbal Science, Rural Development Administration)
  • 권헌중 (농촌진흥청 국립원예특작과학원 사과시험장) ;
  • 사공동훈 (농촌진흥청 국립원예특작과학원 사과시험장) ;
  • 송양익 (농촌진흥청 국립원예특작과학원 사과시험장) ;
  • 박무용 (농촌진흥청 국립원예특작과학원 사과시험장) ;
  • 권순일 (농촌진흥청 국립원예특작과학원 사과시험장) ;
  • 김목종 (농촌진흥청 국립원예특작과학원 사과시험장)
  • Received : 2012.11.07
  • Accepted : 2013.05.20
  • Published : 2013.12.31

Abstract

The study was carried out to examine the initial point of dormancy, breaking time of internal dormancy, and to find out the accumulated hours of low temperature (under $7.2^{\circ}C$ from $0.0^{\circ}C$ to $7.2^{\circ}C$) for bud-breaking. Over-all, the chilling requirement for breaking of internal dormancy in the commercial apple cultivars ('Fuji' and 'Tsugaru') and apple cultivars bred in Korea ('Hongro', 'Sunhong', 'Honggeum', 'Hongan', 'Hongso', 'Gamhong', 'Summer dream') at the Gunwi region for 4 years (from 2009 to 2012) was investigated. Also, the breaking time of internal dormancy in the field at the Gunwi region and the breaking time of dormancy if air temperature of Gunwi region rises $4^{\circ}C$ higher than the current one were investigated using the same data. The initial point of dormancy was set at the time when the lateral bud breaking did not occurred (when heading back cutting was done in the middle of terminal shoots). The occurrence of the breaking of internal dormancy was decided if the breaking of the terminal bud of bourse shoot occurred within 15 days or not in growth chamber. About 100 bourse shoots were collected by cultivar classification in early December every year and were stored at $5.0^{\circ}C$, and they were placed in growth chamber at one week interval. The chilling requirement of cultivars was expressed in accumulated hours in the field and in the growth chamber under $7.2^{\circ}C$ and $0.0-7.2^{\circ}C$ from the initial point of dormancy to the breaking time of internal dormancy. The results showed that the initial point of dormancy in selected cultivars could occur at the end of September. The breaking time of internal dormancy could occur from the end of January to the early of February. The accumulated hours under $7.2^{\circ}C$ for breaking of internal dormancy were 1,600-2,000 hours, while those of $0.0-7.2^{\circ}C$ were 1,300-1,800 hours. In comparing the different apple cultivars, the chilling requirement of the early flowering cultivars seemed lower than that of the late-flowering cultivars. Based on these results, if the air temperature of Gunwi region rises about $4.0^{\circ}C$ higher than the current one, the breaking time of internal dormancy will be delayed by 2-4 weeks.

본 시험은 품종별 휴면 개시점 탐색, 자발휴면 타파시기 및 발아에 필요한 저온($7.2^{\circ}C$ 이하, $0.0-7.2^{\circ}C$) 누적시간을 구명하여 국내 주요 사과품종('후지', '쓰가루')들과 국내에서 육성한 품종('홍로', '선홍', '홍금', '홍안', '홍소', '감홍', '섬머드림')들의 자발휴면 타파에 필요한 저온요구도를 파악하고자 군위지역에서 4년(2009-2012년) 동안 조사하였다. 또한, 이들 자료를 이용하여 군위에서의 자발휴면 타파시기와 현재보다 기온이 $4.0^{\circ}C$ 상승되었을 때의 자발휴면 타파시기를 추정하였다. 휴면 개시점은 정단신초를 절단전정을 하였을 때 액아가 발아하지 않는 시기로 정하였다. 자발휴면 타파여부는 생장상에서 과대지의 정아가 15일 이내로 발아되었는가에 따라 결정하였다. 과대지는 매년 12월 초에 품종별로 약 100개씩 채취하여 $5.0^{\circ}C$에 두고 1주일 간격으로 출고하여 생장상에 10개씩 배치하였다. 품종들의 저온요구도는 휴면 개시점부터 과대지들이 15일 내로 발아될 때까지의 노지 및 생장상에서 $7.2^{\circ}C$ 이하 및 $0.0-7.2^{\circ}C$에서의 누적시간으로 표현하였다. 결과를 살펴보면, 조사품종의 휴면개시점은 9월 말로 추정되었다. 조사품종의 자발휴면 타파시기는 1월 말부터 2월 초 사이로 추정되었다. 각 품종별 자발휴면 타파에 필요한 $7.2^{\circ}C$ 이하의 누적시간은 1,600-2,000시간, $0.0-7.2^{\circ}C$ 누적시간은 1,300-1,800시간이었다. 품종별 저온요구도 비교에 있어서는 개화가 빠른 품종의 저온요구도가 개화가 느린 품종보다 적은 경향이 있었다. 이상의 결과를 토대로 하여, 군위지역의 기온이 지금보다 $4.0^{\circ}C$ 정도 상승된다고 가정하면, 자발휴면 타파시기는 2-4주 정도 지연될 것으로 예측되었다.

Keywords

References

  1. Anderson, J.L. and S.D. Seeley. 1992. Modeling strategy in pomology: Development of the Utah models. Acta. Hort. 313:297-306.
  2. Barden, J.A. and G.H. Neilsen. 2003. Selecting the orchard site, p. 238-239. In: D.C Ferree and I.J. Warrington (eds.). Apples; botany, production and uses. CABI Publishing, Cambridge, MA, USA.
  3. Blanke, M.M. 2008. Perspectives of fruit research and apple orchard management in Germany in a changing climate. Acta Hort. 772:441-446.
  4. Cesaraccio, C., D. Spano, R.L. Snyder, and P. Duce. 2004. Chilling and forcing model to predict bud-burst of crop and forest species. Agric. For. Meteorol. 126:1-13. https://doi.org/10.1016/j.agrformet.2004.03.002
  5. Chmielewski, F.M., A. Muller, and E. Bruns. 2004. Climate changes and trends in phenology of fruit trees and field crops in Germancy, 1961-2000. Agric. For. Meteorol. 121:69-78. https://doi.org/10.1016/S0168-1923(03)00161-8
  6. Chung, U. and J.I. Yun. 2008. A prospect on the changes in shoot-term cold hardiness in "Campbell Early" grapevine under the future warmer winter in South Korea. Kor. J. Agric. For. Meteorol. 10:94-101. https://doi.org/10.5532/KJAFM.2008.10.3.094
  7. Chung, U., K.J. Lee, and B.W. Lee. 2007. Preliminary report of observed urban-rural gradient of carbon dioxide concentration across Seoul, Suwon, and Icheon in South Korea. Kor. J. Agric. For. Meteorol. 9:268-276. https://doi.org/10.5532/KJAFM.2007.9.4.268
  8. Eggert, F.P. 1951. A study of rest in several varieties of apple and in other fruit species grown in New York state. Proc. Amer. Soc. Hort. Sci. 57:169-178.
  9. El-Agamy, S.Z., A.K.A Mohanmed, F.M.A. Mostafa, and A.Y. Abdallah. 2001. Chilling and heat requirements for budbreak and fruiting of "Anna" and "Dorsett Golden" apple cultivars under warm climatic conditions. Acta Hort. 565:103-108.
  10. Faust, M. 1989. Physiology of temperature zone fruit trees. Wiley-Interscience. NY. p. 188-195.
  11. Faust, M.N., D. Liu, S.Y. Wang, and G.W. Stutte. 1995. Involvement of apical dorminance in winter dormancy of apple buds. Acta Hort. 395:47-56.
  12. Finetto, G.A. 1997. Effect of Hydrogen cyanamide treatment after various periods of chilling on breaking endodormancy in apple buds. Acta Hort. 441:191-200.
  13. Gianfagna, T.J. and S.A. Mehlenbacher. 1985. Importance of heat requirement for bud break and time of flowering in apple. HortScience 20:909-911.
  14. Hamer, P.J.C. 1980. A model to evaluate evaporative cooling of apple buds as a frost protection technique. J. Hort. Sci. 55:157-163.
  15. Han, J.H., S.H. Lee, J.J. Choi, S.B. Jung, and H.I. Jang. 2008. Estimation of dormancy breaking time by development rate model in 'Niitake' pear (Pyrus pirfolia Nakai). Kor. J. Agric. For. Meteorol. 10:58-64. https://doi.org/10.5532/KJAFM.2008.10.2.058
  16. Han, J.H., K.S. Cho, J.J. Choi, H.S. Hwang, C.G. Kim, and T.C. Kim. 2010. Estimation of changes in full bloom date of 'Niitaka' pear tree with global warming. Kor. J. Hort. Sci. Technol. 28:937-941.
  17. Hartmann, H.T., A.M. Kofranek, V.E. Rubatzky, and W.J. Flock. 1988. Plant science growth, development, and utilization of cultivated plants. 2nd ed. Prentice-Hall, Englewood Cliffs, NJ. p. 322.
  18. Hannien, H. 1995. Effect of climatic change on trees from cool and temperate regions: and ecophysiological approach to modelling of bud burst phenology. Can. J. Bot. 73:183-199. https://doi.org/10.1139/b95-022
  19. Hauagge, R. and J.N. Cummins. 1991. Phenotypic variation of length of bud dormancy in apple cultivars and related Malus species. J. Amer. Soc. Hort. Sci. 116:100-106.
  20. Heide, O.M. and A.K. Prestrud. 2005. Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol. 25:109-114. https://doi.org/10.1093/treephys/25.1.109
  21. Inter-governmental Panel on Climate Change (IPCC). 2007. Special report of the intergovernmental panel on climate change. CD-Rom.
  22. Lang, G.A., J.D. Early, G.C. Martin, and R.L. Darnell. 1987. Endo-, para-, and ecodormancy: Physiological terminology and classification for dormancy research. HortScience 22:371-377.
  23. Kim, J.H., J.C. Kim, K.C. Ko, K.R. Kim, and J.C. Lee. 2006. General pomology. Hyangmoonsha Press, Seoul. p. 38-39, 175-180.
  24. Kim, S.O., J.H. Kim, U. Chung, S.H. Kim, G.H. Park, and J.I. Yun. 2009a. Quantification of temperate effects on flowering date determination in Niitaka pear. Kor. J. Agric. For. Meteorol. 11:61-71. https://doi.org/10.5532/KJAFM.2009.11.2.061
  25. Kim, S.O., U. Chung, S.H. Kim, I.M. Choi, and J.I. Yun. 2009b. The suitable region and site for 'Fuji' apple under the projected climate in South Korea. Kor. J. Agric. For. Meteorol. 11:162-173. https://doi.org/10.5532/KJAFM.2009.11.4.162
  26. Kobayashi, K.D., L.H. Fuchigami, and M.J. English. 1982. Modeling temperature requirements for rest development in Conus sericea. J. Amer. Soc. Hort. Sci. 107:914-918.
  27. Korea Meteorological Administration (KMA). 2012. Automatic weather system (AWS). http://www.kma.go.kr.
  28. Mehlenbacher, S.A. and A.M. Voordeckers. 1991. Relationship of flowering time, rate of seed germination, and time of leaf budbreak and usefulness in selecting for late-flowering apples. J. Amer. Soc. Hort. Sci. 116:565-568.
  29. Palmer, J.W., J.P. Prive, and D.S. Tustin. 2003. Temperature, p. 224-225. In: D.C Ferree and I.J. Warrington (eds.). Apples; botany, production and uses. CABI Publishing, Cambridge, MA, USA.
  30. Richardson, E.A., S.D. Seeley, and D.R. Walker. 1974. A model estimating the completion of the rest for Edfhaven and Elberta peach trees. HortScience 9:331-332.
  31. Ryugo, K. 1988. Fruit culture, its science and art. John Wiley and Sons Ltd., New Yook. p. 344.
  32. Seeley, S.D. 1996. Modelling climatic regulation of bud dormancy, p. 316-376. In: G.A. Lang (ed.). Plant dormancy-physiology, biochemistry and molecular biology. CAB International, Wallingford, U.K.
  33. Seo, H.H. 2007. Changes of full bloom date of apple 'Fuji' and pear 'Niitake' recently from 30 years. Kor. J. Hort. Sci. Technol. 22(Suppl. II):72. (Abstr.)
  34. Shaltout, A.D. and C.R. Unrath. 1983. Rest completion prediction model for 'Starkrimson Delicious' apples. J. Amer. Soc. Hort. Sci. 108:957-961.
  35. Shin, U.K. and T.C. Kim. 2004. Flowering and fruit set, p. 150-156. In: S.D. Oh (ed.). Fruit tree physiology in relation to temperature. Gilmogm Press, Seoul, Korea.
  36. Swartz, H.J. and L.E. Powell, Jr. 1981. The effect of long chilling requirement on time of bud break in apple. Acta Hort. 120: 173-178.
  37. Webster, A.D. 2005. Sites and soils for temperate tree-fruit production: Their selection and amelioration, p. 12-14. In: J. Tromp, A.D. Webster, and S.J. Wertheim (eds.). Fundamentals of temperate zone tree fruit production. Backhuys publishers, Leiden, Netherlands.
  38. Yu, Y.S. 2004. Dormancy, p. 122-132. In: S.D. Oh (ed.). Fruit tree physiology in relation to temperature. Gilmogm Press, Seoul, Korea.
  39. Yun, S.H. 1998. Climate change and its impact on agricultural ecosystem, world grain demand-supply and measures for the 21st century. Proc. KSCS & KBS Symp. 50th Annu. GSNU. p. 313-335.
  40. Yun, S.H., J.N. Im, J.T. Lee, K.M. Shim, and K.H Hwang. 2001. Climate change and coping with vulnerability of agricultural productivity. Kor. J. Agric. For. Meteorol. 4:220-237.

Cited by

  1. Influence of Low Temperature and Chilling Time on Freezing Hardness of Apple Dwarf-rootstocks and Main Cultivars in Korea vol.16, pp.1, 2014, https://doi.org/10.5532/KJAFM.2014.16.1.59
  2. Influence of Dormancy Level and Carbon Concentration on Freezing Hardiness in Bourse Shoot of 'Fuji' Apple Tree vol.18, pp.3, 2016, https://doi.org/10.5532/KJAFM.2016.18.3.151
  3. 충주지역에서 '후지' 사과나무의 휴면단계 변화 및 눈 발달 vol.33, pp.4, 2013, https://doi.org/10.7235/hort.2015.15010
  4. 조기낙엽이 사과 '시나노스위트'의 수량, 저장양분 및 꽃눈형성에 미치는 영향 vol.25, pp.2, 2013, https://doi.org/10.12791/ksbec.2016.25.2.133
  5. 생육기 조기낙엽에 따른 사과 '후지'/M9의 광합성과 탄수화물의 변화 vol.26, pp.4, 2013, https://doi.org/10.12791/ksbec.2017.26.4.291
  6. 휴면기 저온 누적 시간 및 발아 후 변온이 국내 주요 사과품종의 개화에 미치는 영향 vol.19, pp.4, 2013, https://doi.org/10.5532/kjafm.2017.19.4.252
  7. Predicted Effects of Climate Change on Winter Chill Accumulation by Temperate Trees in South Korea vol.87, pp.2, 2013, https://doi.org/10.2503/hortj.okd-089
  8. 내재휴면기 온도처리가 사과 '홍로' 와 '후지'의 발아와 내부물질 변화에 미치는 영향 vol.28, pp.4, 2019, https://doi.org/10.12791/ksbec.2019.28.4.352