References
- S. Das, Filters, wrappers and a boosting-based hybrid for feature selection, Proceedings of the 18th ICML, pp. 74-81, 2001.
- A.Y. Ng, "On feature selection: learning with exponentially many irrelevant features as training examples", Proceedings of the Fifteenth International Conference on Machine Learning, 1998.
- E. Xing, M. Jordan and R. Carp, "Feature selection for highdimensional genomic microarray data", Proc. of the 18th ICML, 2001.
- E.F. Petricoin, A.M. Ardekani, B.A. Hitt, P.J. Levine, V.A. Fusaro, S.M. Steinberg, G.B. Mills, C. Simone, D.A. Fishman, E.C. Kohn and L.A. Liotta, "Use of proteomic patterns in serum to identify ovarian cancer", Lancet. Vol. 359, No. 9306, pp. 572-577, 2002. https://doi.org/10.1016/S0140-6736(02)07746-2
- K. Jong, E. Marchiori, M. Sebagy and A. Vaart, Feature Selection in Proteomic Pattern Data with Support Vector Machines, pp. 41-48, 2004.
- I. Levner, Feature selection and nearest centroid classification for protein mass spectrometry, BMC Bioinformatics, 2005, available from http://www.biomedcentral.com/1471-2105/6/68.
- R.H. Lilien, H. Farid and B.R. Donald, Probabilistic disease classification of expression-dependent proteomic data from mass spectrometry of human serum. Computational Biology, Vol. 10, No. 6, pp. 925-946, 2003. https://doi.org/10.1089/106652703322756159
- R. Tibshirani, T. Hastiey, B. Narasimhanz, S. Soltys, G. Shi, A. Koong and Q. Le, Sample classifcation from protein mass spectrometry by 'peak probability contrasts'. BioInformatics, Vol. 7, No. 17, pp. 3034-3044, 2004.
- W. Michael, D.N. Naik, S. Kasukurti, A. Pothen, R.R. Devineni, B.L. Adam, O.J. Semmes and G.L. Wright, Computational protein biomarker prediction: a case study for prostate cancer. BMC Bioinformatics, 2004, available from http://www.biomedcentral.com/1471-2105/5/26.
- B. Wu, T. Abbott, D. Fishman, W. McMurray, G. Mor, K. Stone, D. Ward, K. Williams and H. Zhao, Comparison of statistical methods for classifcation of ovarian cancer using mass spectrometry data. BioInformatics, Vol. 19, No. 13, pp. 1636-1643, 2003. https://doi.org/10.1093/bioinformatics/btg210
- L. Breiman, Random forest, Machine Learning, Vol. 45, pp. 5-32, 2001. https://doi.org/10.1023/A:1010933404324
- R.O. Duda, P.E. Hart and D.G. Stork, Pattern Classification; 2nd Edition, John Wiley & Sons Inc, 2001.
- P.N. Tan, M. Steinbach and V.S Kumar, Introduction to Data mining, Addison-Wesley, 2006.
- I, Guyon and A. Elisseeff, An introduction to variable and feature selection, Machine learning, Vol. 3, Special Issue on variable and feature selection, pp. 1157-1182, 2003.
- http://clinicalproteomics.steem.com/
Cited by
- Feature-Learning-Based Printed Circuit Board Inspection via Speeded-Up Robust Features and Random Forest vol.8, pp.6, 2018, https://doi.org/10.3390/app8060932