DOI QR코드

DOI QR Code

Analysis and optimal design of fiber-reinforced composite structures: sail against the wind

  • Nascimbene, R. (EUCENTRE)
  • Received : 2012.01.31
  • Accepted : 2012.06.20
  • Published : 2013.06.25

Abstract

The aim of the paper is to use optimization and advanced numerical computation of a sail fiber-reinforced composite model to increase the performance of a yacht under wind action. Designing a composite-shell system against the wind is a very complex problem, which only in the last two decades has been approached by advanced modeling, optimization and computer fluid dynamics (CFDs) based methods. A sail is a tensile structure hoisted on the rig of a yacht, inflated by wind pressure. Our objective is the multiple criteria optimization of a sail, the engine of a yacht, in order to obtain the maximum thrust force for a given load distribution. We will compute the best possible yarn thickness orientation and distribution in order to minimize the total fiber volume with some displacement constraints and in order to leave the most uniform stress distribution over the whole structure. In this paper our attention will be focused on computer simulation, modeling and optimization of a sail-shape mathematical model in different regatta and wind conditions, with the purpose of improving maneuverability and speed made good.

Keywords

References

  1. Bendsoe, M.P. (1996), Optimization of structural topology, shape, and material, New York, Springer.
  2. Bendsoe, M.P. and Sigmund, O. (2003), Topology Optimization - Theory, Methods and Applications, Springer, Berlin.
  3. Bruggi, M. (2008), "On the solution of the checkerboard problem in mixed-FEM topology optimization", Comput. Struct., 86(19-20), 1819-1829. https://doi.org/10.1016/j.compstruc.2008.04.008
  4. Bruggi, M. and Venini, P. (2007), "Topology optimization of incompressible media using mixed finite elements", Comp. Meth. App. Mech. Eng., 196 (33-34), 3151-3164. https://doi.org/10.1016/j.cma.2007.02.013
  5. Charvet, T., Hauville, F. and Huberson, S. (1996), "Numerical simulation of the flow over sails in real sailing conditions", J. Wind Eng. Ind. Aerod., 63(1-3), 111-129. https://doi.org/10.1016/S0167-6105(96)00072-4
  6. Cheng, H.C. and Kikuchi, N. (1994), "An improved approach for determining the optimal orientation of orthotropic material", Struct. Optim., 8(2-3),101-112. https://doi.org/10.1007/BF01743305
  7. Cinquini, C., Venini, P., Nascimbene, R. and Tiano, A. (2001), "Design of a river-sea ship by optimization", Struct. Multidiscip. O., 22(3), 240-247. https://doi.org/10.1007/s001580100141
  8. Claughton, A.R., Wellicome, J.F. and Shenoi, R.A. (1998), Sailing Yacht Design: Theory, Edinburgh, Addison Wesley Longman Limited.
  9. Contri, P. and Schrefler, B.A. (1988), "A geometrically nonlinear finite element analysis of wrinkled membrane surface by a no-compression material model", Commun. Numer. Meth. En., 4(1), 5-15. https://doi.org/10.1002/cnm.1630040103
  10. DellaCroce, L., Venini, P. and Nascimbene, R. (2003), "Numerical Simulation of an Elastoplastic Plate via Mixed Finite Elements", J. Eng. Math., 46(1), 69-86. https://doi.org/10.1023/A:1022836202029
  11. Doyle, T., Gerritsen, M. and Iaccarino, G. (2002), Towards sail-shape optimization of a modern clipper ship, Centre for Turbulence Research, Annual Research Briefs.
  12. Fallow, J.B. (1996), "America's Cup sail design", J. Wind Eng. Ind. Aerod., 63(1-3), 183-192. https://doi.org/10.1016/S0167-6105(96)00075-X
  13. Fletcher, R. (1987), Practical methods of optimization, 2nd ed. London, John Wiley and Sons.
  14. Fleury, C. (1989), "CONLIN: an efficient dual optimizer based on convex approximation concepts", Struct. Optim., 1(2), 81-89. https://doi.org/10.1007/BF01637664
  15. Hedges, K.L., Richards, P.J. and Mallison, G.D. (1996), "Computer modeling of downwind sails", J. Wind Eng. Ind. Aerod., 63, 95-110. https://doi.org/10.1016/S0167-6105(96)00071-2
  16. Lasher, W.C., Sonnenmeier, J.R., Forsman, D.R. and Tomcho, J. (2005), "The aerodynamics of symmetric spinnakers", J. Wind Eng. Ind. Aerod., 93(4), 311-337. https://doi.org/10.1016/j.jweia.2005.02.001
  17. Marchaj, CA. (1990), Sail Performance: Techniques to maximize Sail Power, Camden, International Marine.
  18. Moraes, H.B., Vasconcellos, J.M. and Almeida, P.M. (2007), "Multiple criteria optimization applied to high speed catamaran preliminary design", Ocean Eng., 34, 133-147. https://doi.org/10.1016/j.oceaneng.2005.12.009
  19. Nascimbene, R. (2013), "An arbitrary cross section, locking free shear-flexible curved beam finite element", Int. J. Comp. Meth. Eng. Sci. Mech., 14(2), 90-103. https://doi.org/10.1080/15502287.2012.698706
  20. Nascimbene, R. and Venini, P. (2002), "A new locking-free equilibrium mixed element for plane elasticity with continuous displacement interpolation", Comput. Method. Appl. M., 191, 1843-1860. https://doi.org/10.1016/S0045-7825(01)00356-5
  21. Parolini, N. and Quarteroni, A. (2005), "Mathematical models and numerical simulations for the America's Cup", Comput. Method. Appl. M., 194, 1001-1026. https://doi.org/10.1016/j.cma.2004.06.020
  22. Pedersen, N. (1989), "On optimal orientation of orthotropic materials", Struct. Optim., 1,101-106. https://doi.org/10.1007/BF01637666
  23. Shankaran, S. (2003), Numerical analysis and design of upwind sails, Ph.D. Thesis, Stanford University.
  24. Spalatelu-Lazar, M., Lene, F. and Turbe, N. (2008), "Modelling and optimization of sails", Comput. Struct., 86, 1486-1493. https://doi.org/10.1016/j.compstruc.2007.05.028
  25. Sugimoto, T. (1992), "A first course in optimum design of yacht sails", Proceedings of the 11th Australasian Fluid Mechanics Conference, University of Tasmania, Hobart, Australia.
  26. Sugimoto, T. (1995), "Optimum sail design for small heel and weak wind shear conditions", Fluid Dyn. Res., 15(2), 75-88. https://doi.org/10.1016/0169-5983(95)91430-F
  27. Svanberg, K. (1987), "Method of moving asymptotes - A new method for structural optimization", Int. J. Numer. Meth. Eng., 24, 359-373. https://doi.org/10.1002/nme.1620240207
  28. Tabiei, A. and Ivanov, I. (2003), "Fiber reorientation in laminated and woven composites for finite element simulations", J. Thermoplast. Compos., 16(5), 457-474. https://doi.org/10.1177/0892705703032853
  29. Tan, P., Tong, L. and Steven, G.P. (1997), "Modelling for predicting the mechanical properties of textile composites-a review", Compos. Part A, 28(11), 903-922. https://doi.org/10.1016/S1359-835X(97)00069-9
  30. Venini, P. and Nascimbene, R. (2003), "A new fixed-point algorithm for hardening plasticity based on nonlinear mixed variational inequalities", Int. J. Numer. Meth. Eng., 57(1), 83-102. https://doi.org/10.1002/nme.672
  31. Whidden, T. and Levitt, M. (1990), The art and science of sails: A Guide to Modern Materials, Construction, Aerodynamics, Upkeep, and Use, St. Martin's Press.

Cited by

  1. Shape Sensing Monitoring System Based on Fiber-Optic Strain Measurements: Laboratory Tests vol.41, pp.4, 2017, https://doi.org/10.1007/s40799-017-0187-0
  2. Real-time flying shape detection of yacht sails based on strain measurements vol.131, 2017, https://doi.org/10.1016/j.oceaneng.2016.12.015
  3. Optimization of a thruster sections by Prandtl's theory vol.87, 2016, https://doi.org/10.1016/j.renene.2015.08.053
  4. Frequency and critical fluid velocity analysis of pipes reinforced with FG-CNTs conveying internal flows vol.24, pp.3, 2013, https://doi.org/10.12989/was.2017.24.3.267
  5. Simultaneous Shape and Stacking Sequence Optimization of Laminated Composite Free-Form Shells Using Multi-Island Genetic Algorithm vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/2056460
  6. Investigating loading rate and fibre densities influence on SRG - concrete bond behaviour vol.34, pp.6, 2020, https://doi.org/10.12989/scs.2020.34.6.877