References
- Bearman, P.W. (1984), "Vortex shedding from oscillating bluff bodies", Annu. Rev. Fluid Mech.. 16(1), 195-222. https://doi.org/10.1146/annurev.fl.16.010184.001211
- Blackburn, H. and Henderson, R. (1996), "Lock-in behavior in simulated vortex-induced vibration", Exp.Therm. Fluid Sci.. 12(2), 184-189. https://doi.org/10.1016/0894-1777(95)00093-3
- Blackburn, H.M., Govardhan, R.N. and Williamson, C.H.K. (2001), "A complementary numerical and physical investigation of vortex-induced vibration" , J. Fluid. Struct., 15(3-4), 481-488. https://doi.org/10.1006/jfls.2000.0345
- Blackburn, H.M. and Karniadakis, G.E. (1993). "Two- and Three-dimensional simulations of vortex-induced vibration of a circular cylinder", Proceedings of the 3rd (1993) International Offshore and Polar Engineering Conference, Part 3 (of 4), June 6, 1993 - June 11, 1993, Singapore.
- Blevins, R.D. (1994), Flow-induced vibration, Krieger, Malabar, Florida.
- Brika, D. and Laneville, A. (1993), "Vortex-induced vibrations of a long flexible circular cylinder", J. Fluid Mech. Digital Archive. 250(1), 481-508.
- Farhat, C., Lesoinne, M. and Le Tallec, P. (1998), "Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity", Comput. Meth. Appl. Mech. Eng.. 157(1-2), 95-114. https://doi.org/10.1016/S0045-7825(97)00216-8
- Feng, C.C. (1968), The measurements of vortex-induced effects in flow past stationary and oscillating circular and D-section cylinder, Universityof British Columbia, Vancouver, B.C., Canada.
- Fey, U., Konig, M. and Eckelmann, H. (1998), "A new Strouhal--Reynolds-number relationship for the circular cylinder in the range 47 [less-than] Re [less-than] 2 x 10[sup 5]", Phys. Fluid., 10(7), 1547-1549. https://doi.org/10.1063/1.869675
- Govardhan, R. and Williamson, C.H.K. (2000), "Modes of vortex formation and frequency response of a freely vibrating cylinder", J. Fluid Mech., 420(Copyright 2000, IEE), 85-130. https://doi.org/10.1017/S0022112000001233
- Guilmineau, E. and Queutey, P. (2004), "Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow", J. Fluid. Struct., 19(4), 449-466. https://doi.org/10.1016/j.jfluidstructs.2004.02.004
- Habashi, W.G. (2009), "Advances in CFD for in-flight icing simulation", J. Japan Soc. Fluid Mech., 28(2), 99-118.
- Habashi, W.G., Aube, M., Baruzzi, G., Morency, F., Tran, P. and Narramore, J.C. (2004), FENSAP-ICE: A full-3d in-flight icing simulation system for aircraft, rotorcraft and UAVS, Yokohama, Japan
- Khalak, A. and Williamson, C.H.K. (1996), "Dynamics of a hydroelastic cylinder with very low mass and damping", J. Fluid. Struct., 10(5), 455-472. https://doi.org/10.1006/jfls.1996.0031
- Khalak, A. and Williamson, C.H.K. (1999), "Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping", J. Fluid. Struct.. 13(7-8), 813-851. https://doi.org/10.1006/jfls.1999.0236
- Newman, D.J. and Karniadakis, G.E. (1997), "A direct numerical simulation study of flow past a freely vibrating cable", J. Fluid Mech., 344, 95-136. https://doi.org/10.1017/S002211209700582X
- Pan, Z.Y., Cui, W.C. and Miao, Q.M. (2007), "Numerical simulation of vortex-induced vibration of a circular cylinder at low mass-damping using RANS code", J. Fluid. Struct.. 23(1), 23-37. https://doi.org/10.1016/j.jfluidstructs.2006.07.007
- Pomarede, M., Longatte, E. and Sigrist, J.F. (2010), "Numerical simulation of an elementary Vortex-Induced-Vibration problem by using fully-coupled fluid solid system computation", Int. J. Multiphysics. 4(3), 273-291. https://doi.org/10.1260/1750-9548.4.3.273
- Sarpkaya, T. (1979), "Vortex-induced oscillations: a selective review", J. Appl. Mech., 46(2), 241-258. https://doi.org/10.1115/1.3424537
- Sarpkaya, T. (2004), "A critical review of the intrinsic nature of vortex-induced vibrations", J. Fluid. Struct., 19(4), 389-447. https://doi.org/10.1016/j.jfluidstructs.2004.02.005
- Spalart, P.R. and Allmaras, S.R. (1992), "A one-equation turbulence model for aerodynamic flows", AIAA-Paper 92-0439.
- Williamson, C.H.K. and Govardhan, R. (2004), "Vortex-induced vibrations", Annu. Rev. Fluid Mech., 36(1), 413-455. https://doi.org/10.1146/annurev.fluid.36.050802.122128
- Williamson, C.H.K. and Roshko, A. (1988), "Vortex formation in the wake of an oscillating cylinder", J. Fluid. Struct., 2(4), 355-381. https://doi.org/10.1016/S0889-9746(88)90058-8
Cited by
- VIV study of an elastically mounted cylinder having low mass-damping ratio using RANS model vol.121, 2018, https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.109
- Investigation on the effect of vibration frequency on vortex-induced vibrations by section model tests vol.20, pp.2, 2015, https://doi.org/10.12989/was.2015.20.2.349
- Kinetic energy based model assessment and sensitivity analysis of vortex induced vibration of segmental bridge decks vol.11, pp.4, 2017, https://doi.org/10.1007/s11709-017-0435-5
- Numerical simulation and transonic wind-tunnel test for elastic thin-shell structure considering fluid–structure interaction vol.28, pp.1, 2015, https://doi.org/10.1016/j.cja.2014.12.027
- Predicting wind-induced vibrations of high-rise buildings using unsteady CFD and modal analysis vol.136, 2015, https://doi.org/10.1016/j.jweia.2014.11.008
- Wind effect on grooved and scallop domes vol.148, 2017, https://doi.org/10.1016/j.engstruct.2017.07.003
- Preconditioning technique for a simultaneous solution to wind-membrane interaction vol.22, pp.3, 2016, https://doi.org/10.12989/was.2016.22.3.349
- Enhancing aerodynamic performance of NACA 4412 aircraft wing using leading edge modification vol.29, pp.4, 2019, https://doi.org/10.12989/was.2019.29.4.271