DOI QR코드

DOI QR Code

The influence of anthropogenic disturbances and watershed morphological characteristics on Hg dynamics in Northern Quebec large boreal lakes

  • Moingt, M. (GEOTOP-UQAM, Institut des Sciences de l'Environnement) ;
  • Lucotte, M. (GEOTOP-UQAM, Institut des Sciences de l'Environnement) ;
  • Paquet, S. (GEOTOP-UQAM, Institut des Sciences de l'Environnement) ;
  • Beaulne, J.S. (Ecole Centrale de Lyon, Environmental Microbial Genomics Group)
  • Received : 2012.10.23
  • Accepted : 2013.03.15
  • Published : 2013.06.25

Abstract

Mercury (Hg) dynamics in the boreal environment have been a subject of concern in recent decades, due to the exposure of local populations to the contaminant. Land use, because of its impact on mercury inputs, has been highlighted as a key player in the sources and eventual concentrations of the heavy metal. In order to evaluate the impact of watershed disturbances on Hg dynamics in frequently fished, large boreal lakes, we studied sediment cores retrieved at the focal point of eight large lakes of Qu$\acute{e}$bec (Canada), six with watersheds affected by land uses such as logging and/or mining, and two with pristine watersheds, considered as reference lakes. Using a Geographical Information System (GIS), we correlated the recent evolution of land uses (e.g., logging and mining activities) and morphological characteristics of the watershed (e.g., mean slope of the drainage area, vegetation cover) to total Hg concentrations (THg) in sedimentary records. In each core, THg gradually increased over recent years with maximum values between 70 and 370 ng/g, the lowest mercury concentrations corresponding to the pristine lake cores. The Hg Anthropogenic Sedimentary Enrichment Factor (ASEF) values range from 2 to 15. Surprisingly, we noticed that the presence of intense land uses in the watershed does not necessarily correspond to noticeable increases of THg in lake sediments, beyond the normal increment that can be attributed to Hg atmospheric deposition since the beginning of the industrial era. Rather, the terrestrial Hg inputs of boreal lakes appear to be influenced by watershed characteristics such as mean slopes and vegetation cover.

Keywords

References

  1. Abdullah, M.P., Daud, J., Hong, K.S. and Yew, C.H. (1995), "Improved method for the determination of glyphosate in water", J. Chromatogr. A, 697(1-2), 363-369. https://doi.org/10.1016/0021-9673(94)01161-7
  2. Babiarz, C.L., Benoit, J.M., Shafer, M.M., Andren, A.W., Hurley, J.P. and Webb, D.A. (1998), "Seasonal influences on partitioning and transport of total and methylmercury in rivers from contrasting watersheds", Biogeochem., 41(3), 237-257. https://doi.org/10.1023/A:1005940630948
  3. Barja, B.C., Herszage, J. and Dos Santos Afonso, M. (2001), "Iron(III) - phosphonate complexes", Polyhedron, 20(15-16), 1821-1830. https://doi.org/10.1016/S0277-5387(01)00741-0
  4. Beaulne, J.-S., Lucotte, M., Paquet, S. and Canuel, R. (2012), "Modeling mercury concentrations in northern pikes and walleyes from frequently fished lakes of Abitibi-Temiscamingue (Quebec, Canada): a GIS approach", Boreal Environ. Res., 17(3/4), 277-290.
  5. Bergstrom, L., Borjesson, E. and Stenstrom, J. (2011), "Laboratory and lysimeter studies of glyphosate and aminomethylphosphonic acid in a sand and a clay soil", J. Environ. Qual., 40(1), 98-108. https://doi.org/10.2134/jeq2010.0179
  6. Bishop, K., Allan, C., Bringmark, L., Garcia, E., Hellsten, S., Hogbom, L., Johansson, K., Lomander, A., Meili, M., Munthe, J., Nilsson, M., Porvari, P., Skyllberg, U., Sorensen, R., Zetterberg, T. and Akerblom, S. (2009), "The effects of forestry on Hg bioaccumulation in Nemoral/Boreal Waters and recommendations for good silvicultural practice", AMBIO, 38(7), 373-380. https://doi.org/10.1579/0044-7447-38.7.373
  7. Bishop, K., Lee, Y.H., Pettersson, C. and Allard, B. (1995), "Terrestrial sources of methylmercury in surface waters: The importance of the riparian zone on the Svartberget Catchment", Water Air Soil Poll., 80(1), 435-444. https://doi.org/10.1007/BF01189693
  8. Bloom, N.S. and Fitzgerald, W.F. (1988), "Determination of volatile mercury species at the picogram level by low temperature gas chromatography with cold-vapor atomic fluorescence detection", Anal. Chim. Acta, 208, 151-161. https://doi.org/10.1016/S0003-2670(00)80743-6
  9. Borjesson, E. and Torstensson, L. (2000), "New methods for determination of glyphosate and (aminomethyl) phosphonic acid in water and soil", J. Chromatogr. A, 886(1-2), 207-216. https://doi.org/10.1016/S0021-9673(00)00514-8
  10. Branfireun, B.A. and Roulet, N.T. (2002), "Controls on the fate and transport of methylmercury in a boreal headwater catchment, northwestern Ontario, Canada", Hydrol. Earth Syst. Sc., 6(4), 785-794. https://doi.org/10.5194/hess-6-785-2002
  11. Chadwick, S.P., Babiarz, C.L., Hurley, J.P. and Armstrong, D.E. (2006), "Influences of iron, manganese, and dissolved organic carbon on the hypolimnetic cycling of amended mercury", Sci. Total Environ., 368(1), 177-188. https://doi.org/10.1016/j.scitotenv.2005.09.039
  12. Chang, M. (2006), Forest Hydrology: An Introduction to Water and Forests, CRC press, Boca Raton, FL, USA.
  13. Chen, M.-X., Cao, Z.-Y., Jiang, Y. and Zhu, Z.-W. (2013), "Direct determination of glyphosate and its major metabolite, aminomethylphosphonic acid, in fruits and vegetables by mixed-mode hydrophilic interaction/weak anion-exchange liquid chromatography coupled with electrospray tandem mass spectrometry", J. Chromatogr. A, 1272(0), 90-99. https://doi.org/10.1016/j.chroma.2012.11.069
  14. Countway, R.E., Canuel, E.A. and Dickhut, R.M. (2007), "Sources of particulate organic matter in surface waters of the York River, VA estuary", Org. Geochem., 38(3), 365-379. https://doi.org/10.1016/j.orggeochem.2006.06.004
  15. Demers, J.D., Driscoll, C.T., Fahey, T.J. and Yavitt, J.B. (2007), "Mercury cycling in litter and soil in different forest types in the Adirondack Region, New York, USA", Ecol. Appl., 17(5), 1341-1351. https://doi.org/10.1890/06-1697.1
  16. Domagalski, J.L., Alpers, C.N., Slotton, D.G., Suchanek, T.H. and Ayers, S.M. (2004), "Mercury and methylmercury concentrations and loads in the Cache Creek watershed, California", Sci. Total Environ., 327(1-3), 215-237. https://doi.org/10.1016/j.scitotenv.2004.01.013
  17. Ericksen, J.A., Gustin, M.S., Schorran, D.E., Johnson, D.W., Lindberg, S.E. and Coleman, J.S. (2003), "Accumulation of atmospheric mercury in forest foliage", Atmos. Environ., 37(12), 1613-1622. https://doi.org/10.1016/S1352-2310(03)00008-6
  18. Ethier, A.L.M., Scheuhammer, A.M., Blais, J.M., Paterson, A.M., Mierle, G., Ingram, R. and Lean, D.R.S. (2010), "Mercury empirical relationships in sediments from three Ontario lakes", Sci. Total Environ., 408(9), 2087-2095. https://doi.org/10.1016/j.scitotenv.2009.12.037
  19. Fitzgerald, W.F., Engstrom, D.R., Mason, R.P. and Nater, E.A. (1998), "The case for atmospheric mercury contamination in remote areas", Environ. Sci. Tech., 32(1), 1-7. https://doi.org/10.1021/es970284w
  20. Frescholtz, T.E., Gustin, M.S., Schorran, D.E. and Fernandez, G.C. (2003), "Assessing the source of mercury in foliar tissue of quaking aspen", Environ. Toxicol. Chem., 22(9), 2114-2119. https://doi.org/10.1002/etc.5620220922
  21. Galloway, M.E. and Branfireun, B.A. (2004), "Mercury dynamics of a temperate forested wetland", Sci. Total Environ., 325(1-3), 239-254. https://doi.org/10.1016/j.scitotenv.2003.11.010
  22. Garcia, E. and Carignan, R. (2005), "Mercury concentrations in fish from forest harvesting and fire-impacted Canadian Boreal lakes compared using stable isotopes of nitrogen", Environ. Toxicol. Chem., 24(3), 685-693. https://doi.org/10.1897/04-065R.1
  23. Goldman, J.C., Caron, D.A. and Dennett, M.R. (1987), "Regulation of gross growth efficiency in bacteria by substrate C:N ratio", Limnol. Oceanogr., 32(6), 1239-1252. https://doi.org/10.4319/lo.1987.32.6.1239
  24. Goni, M.A. and Montgomery, S. (2000), "Alkaline CuO Oxidation with a Microwave Digestion System: Lignin Analyses of Geochemical Samples", Anal. Chem., 72(14), 3116-3121. https://doi.org/10.1021/ac991316w
  25. Goni, M.A., Teixeira, M.J. and Perkey, D.W. (2003), "Sources and distribution of organic matter in a river-dominated estuary (Winyah Bay, SC, USA)", Estuar. Coast. Shelf S., 57(5), 1023-1048. https://doi.org/10.1016/S0272-7714(03)00008-8
  26. Greenfield, B., Hrabik, T., Harvey, C. and Carpenter, S. (2001), "Predicting mercury levels in yellow perch: Use of water chemistry, trophic ecology, and spatial straits", Can. J. Fish. Aquat. Sci., 58, 1419-1429. https://doi.org/10.1139/f01-088
  27. Hakanson, L. and Jansson, M. (1983), Principles of Lake Sedimentology, Springer, New-York.
  28. He, T., Lu, J., Yang, F. and Feng, X. (2007), "Horizontal and vertical variability of mercury species in pore water and sediments in small lakes in Ontario", Sci. Total Environ., 386(1-3), 53-64. https://doi.org/10.1016/j.scitotenv.2007.07.022
  29. Hedges, J.I. and Parker, P.L. (1976), "Land-derived organic matter in surface sediments from the Gulf of Mexico", Geochim. Cosmochim. Ac., 40(9), 1019-1029. https://doi.org/10.1016/0016-7037(76)90044-2
  30. Hernes, P.J., Robinson, A.C. and Aufdenkampe, A.K. (2007), "Fractionation of lignin during leaching and sorption and implications for organic matter "freshness"", Geophys. Res. Lett., 34(17), L17401. https://doi.org/10.1029/2007GL031017
  31. Hintelmann, H., Harris, R., Heyes, A., Hurley, J.P., Kelly, C.A., Krabbenhoft, D.P., Lindberg, S., Rudd, J.W.M., Scott, K.J. and St. Louis, V.L. (2002), "Reactivity and mobility of new and old mercury deposition in a Boreal Forest ecosystem during the first year of the METAALICUS study", Environ. Sci. Tech., 36(23), 5034-5040. https://doi.org/10.1021/es025572t
  32. Houel, S., Louchouarn, P., Lucotte, M., Canuel, R. and Ghaleb, B. (2006), "Translocation of soil organic matter following reservoir impoundment in Boreal Systems: Implications for in situ productivity", Limnol. Oceanogr., 51(3), 1497-1513. https://doi.org/10.4319/lo.2006.51.3.1497
  33. Hurley, J.P., Benoit, J.M., Babiarz, C.L., Shafer, M.M., Andren, A.W., Sullivan, J.R., Hammond, R. and Webb, D.A. (1995), "Influences of watershed characteristics on mercury levels in Wisconsin rivers", Environ. Sci. Technol., 29(7), 1867-1875. https://doi.org/10.1021/es00007a026
  34. Kainz, M., Lucotte, M. and Parrish, C.C. (2003), "Relationships between organic matter composition and methyl mercury content of offshore and carbon-rich littoral sediments in an oligotrophic lake", Can. J. Fish. Aquat. Sci., 60(7), 888-896. https://doi.org/10.1139/f03-075
  35. Klaminder, J., Bindler, R., Rydberg, J. and Renberg, I. (2008), "Is there a chronological record of atmospheric mercury and lead deposition preserved in the mor layer (O-horizon) of boreal forest soils?", Geochim. Cosmochim. Ac., 72(3), 703-712. https://doi.org/10.1016/j.gca.2007.10.030
  36. Kolka, R.K., Grigal, D.F., Verry, E.S. and Nater, E.A. (1999), "Mercury and organic carbon relationships in streams draining forested upland/peatland watersheds", J. Environ. Qual., 28(3), 766-775.
  37. Lee, S. and Fuhrman, J.A. (1987), "Relationships between biovolume and biomass of naturally derived marine bacterioplankton", Appl. Environ. Microb., 53(6), 1298-1303.
  38. Lindberg, S., Bullock, R., Ebinghaus, R., Engstrom, D., Feng, X., Fitzgerald, W., Pirrone, N., Prestbo, E. and Seigneur, C. (2007), "A synthesis of progress and uncertainties in attributing the sources of mercury in deposition", AMBIO, 36(1), 19-33. https://doi.org/10.1579/0044-7447(2007)36[19:ASOPAU]2.0.CO;2
  39. Lobbes, J.M., Fitznar, H.P. and Kattner, G. (2000), "Biogeochemical characteristics of dissolved and particulate organic matter in Russian rivers entering the Arctic Ocean", Geochim. Cosmochim. Ac., 64(17), 2973-2983. https://doi.org/10.1016/S0016-7037(00)00409-9
  40. Longley, P., Goodchild, M.F., Maguire, D.J. and Rhind, D.W. (2005), Geographic Information Systems and Science, Wiley J. editor, Rexdale, Canada.
  41. Lucotte, M., Mucci, A., Hillaire-Marcel, C., Pichet, P. and Grondin, A. (1995), "Anthropogenic mercury enrichment in remote lakes of northern Quebec (Canada)", Water Air Soil Poll., 80(1), 467-476. https://doi.org/10.1007/BF01189696
  42. Mackereth, F.J.H. (1958), "A portable core sampler for lake deposits", Limnol. Oceanogr., 3(2), 181-191. https://doi.org/10.4319/lo.1958.3.2.0181
  43. Magnuson, J.J., Kratz, T.K. and Benson, B.J. (2006), Long-term Dynamics of Lakes in the Landscape: Long Term Ecological Research on North Temperate Lakes, Oxford University Press, New York, USA.
  44. Mast, M.A., Campbell, D., Krabbenhoft, D. and Taylor, H. (2005), "Mercury transport in a high-elevation watershed in Rocky Mountain National Park, Colorado", Water Air Soil Poll., 164(1-4), 21-42. https://doi.org/10.1007/s11270-005-1657-z
  45. Moingt, M. (2008), "Caracterisation de la matiere organique dissoute d'un site d'eau de surface (fleuve Saint-Laurent) et d'un site d'eau souterraine (aquifere de l'Astien, France) par l'utilisation des isotopes du carbone et des produits d'oxydation de la lignine", Science de l'Environnement, Ph.D. Universite du Quebec a Montreal, Montreal, 173.
  46. Neteler, M. and Mitasova, H. (2008), Open Source GIS a GRASS GIS Approach, Springer, New York, USA.
  47. Ntdb (2011), Customer Support Group, Government of Canada, Natural Resources Canada, Earth Sciences Sector, Centre for Topographic Information, Sherbrooke.
  48. Ouellet, J.-F., Lucotte, M., Teisserenc, R., Paquet, S. and Canuel, R. (2009), "Lignin biomarkers as tracers of mercury sources in lakes water column", Biogeochem., 94(2), 123-140. https://doi.org/10.1007/s10533-009-9314-z
  49. Pacyna, E.G., Pacyna, J.M., Steenhuisen, F. and Wilson, S. (2006), "Global anthropogenic mercury emission inventory for 2000", Atmos. Environ., 40(22), 4048-4063. https://doi.org/10.1016/j.atmosenv.2006.03.041
  50. Petit, S., Lucotte, M. and Teisserenc, R. (2011), "Mercury sources and bioavailability in lakes located in the mining district of Chibougamau, Eastern Canada", Appl. Geochem., 26(2), 230-241. https://doi.org/10.1016/j.apgeochem.2010.11.023
  51. Pichet, P., Morrison, K, Rheault, I. and Tremblay, A. (1999), Analysis of total mercury and methylmercury in environmental samples, (In: R. Schetagne M.L., N. Therien, C. Langlois and A. Tremblay, editor, Mercury in the biogeochemical cycle, natural environments and hydroelectric reservoirs of Northern Quebec), Springer, 41-52.
  52. Porvari, P. and Verta, M. (2003), "Total and methyl mercury concentrations and fluxes from small boreal forest catchments in Finland", Environ. Poll., 123(2), 181-191. https://doi.org/10.1016/S0269-7491(02)00404-9
  53. Porvari, P., Verta, M., Munthe, J. and Haapanen, M. (2003), "Forestry practices increase mercury and methyl mercury output from boreal forest catchments", Environ. Sci. Tech., 37(11), 2389-2393. https://doi.org/10.1021/es0340174
  54. Riva-Murray, K., Chasar, L.C., Bradley, P.M., Burns, D.A., Brigham, M.E., Smith, M.J. and Abrahamsen, T.A. (2011), "Spatial patterns of mercury in macroinvertebrates and fishes from streams of two contrasting forested landscapes in the eastern United States", Ecotoxicology, 20(7), 1530-1542. https://doi.org/10.1007/s10646-011-0719-9
  55. Rognerud, S. and Fjeld, E. (2001), "Trace element contamination of Norwegian Lake sediments", AMBIO, 30(1), 11-19. https://doi.org/10.1579/0044-7447-30.1.11
  56. Sampaio Da Silva, D., Lucotte, M., Paquet, S. and Davidson, R. (2009), "Influence of ecological factors and of land use on mercury levels in fish in the Tapajos River basin, Amazon", Environ. Res., 109(4), 432-446. https://doi.org/10.1016/j.envres.2009.02.011
  57. Schelker, J., Burns, D.A., Weiler, M., Laudon, H. (2011), "Hydrological mobilization of mercury and dissolved organic carbon in a snow-dominated, forested watershed: Conceptualization and modeling", J. Geophys. Res., 116(G1), G01002.
  58. Schluter, K. and Gath, S. (1997), "Modelling leaching of inorganic Hg(II) in a Scandinavian iron-humus podzol - validation and long-term leaching under various deposition rates", Water Air Soil Poll., 96(1-4), 301-320.
  59. Selvendiran, P., Driscoll, C.T., Bushey, J.T. and Montesdeoca, M.R. (2008), "Wetland influence on mercury fate and transport in a temperate forested watershed", Environ. Poll., 154(1), 46-55. https://doi.org/10.1016/j.envpol.2007.12.005
  60. Shanley, J.B., Schuster, P.F., Reddy, M.M., Roth, D.A., Taylor, H.E. and Aiken, G.R. (2002), "Mercury on the move during snowmelt in Vermont", Eos Trans. AGU, 83(5), 45-48.
  61. Teisserenc, R. (2009), "Dynamique de la matiere organique terrigene et du mercure dans les lacs et reservoirs boreaux", Institut des Sciences de l'Environnement. Ph.D. UQAM, Montreal, 182.
  62. Teisserenc, R., Lucotte, M. and Houel, S. (2011), "Terrestrial organic matter biomarkers as tracers of Hg sources in lake sediments", Biogeochem., 103(1), 235-244. https://doi.org/10.1007/s10533-010-9458-x
  63. Teisserenc, R., Lucotte, M., Houel, S. and Carreau, J. (2010), "Integrated transfers of terrigenous organic matter to lakes at their watershed level: A combined biomarker and GIS analysis", Geochim. Cosmochim. Ac., 74(22), 6375-6386. https://doi.org/10.1016/j.gca.2010.08.029
  64. Thornton, S.F. and Mcmanus, J. (1994), "Application of organic carbon and nitrogen stable isotope and C/N ratios as source indicators of organic matter provenance in Estuarine Systems: Evidence from the Tay Estuary, Scotland", Estuar. Coast. Shelf Sci., 38(3), 219-233. https://doi.org/10.1006/ecss.1994.1015
  65. Wong, H.K.T., Gauthier, A. and Nriagu, J.O. (1999), "Dispersion and toxicity of metals from abandoned gold mine tailings at Goldenville, Nova Scotia, Canada", Sci. Total Environ., 228(1), 35-47. https://doi.org/10.1016/S0048-9697(99)00021-2
  66. Zelenkova, N.F. and Vinokurova, N.G. (2008), "Determination of glyphosate and its biodegradation products by chromatographic methods", J. Anal. Chem., 63(9), 871-874. https://doi.org/10.1134/S106193480809013X

Cited by

  1. Environmental and Anthropogenic Factors Influencing Mercury Dynamics During the Past Century in Floodplain Lakes of the Tapajós River, Brazilian Amazon vol.72, pp.1, 2017, https://doi.org/10.1007/s00244-016-0325-1
  2. Deciphering the impact of land-uses on terrestrial organic matter and mercury inputs to large boreal lakes of central Québec using lignin biomarkers vol.41, 2014, https://doi.org/10.1016/j.apgeochem.2013.11.008
  3. Climate and Physiography Predict Mercury Concentrations in Game Fish Species in Quebec Lakes Better than Anthropogenic Disturbances vol.70, pp.4, 2016, https://doi.org/10.1007/s00244-016-0261-0
  4. Impact of urbanization and industrialization on irrigation water quality of a canal - a case study of Tongi canal, Bangladesh vol.5, pp.2, 2016, https://doi.org/10.12989/aer.2016.5.2.109
  5. Assessment of seasonal variations in water quality of Brahmani river using PCA vol.6, pp.1, 2013, https://doi.org/10.12989/aer.2017.6.1.053