References
- Agrios, G. 2005. Plant Pathology, 5th ed., Elsevier Academic Press, Burlington, USA. pp. 922.
- de Boor, C. 1978. A practical guide to splines. Springer-Verlag. New York, U.S.A. pp. 113-115.
- Field Spectroscopy Facility, 2005. Field Guide for the GER3700. http://fsf.nerc.ac.uk/resources/guides/pdf_guides/3700_guide_v3_rocky.pdf
- Fukuda, K. Hogetsu, T., and Suzuki, K. 1992. Photosynthesis and water status of pine-wood nematode-infected pine seedlings. Journal of the Japanese Forest Society 74: 1-8.
- Ichihara, Y., Fukuda, K., and Suzuki, K. 2000. Early symptom development and histological change associated with migration of Bursaphelenchus xylophilus in seeding tissues of Pinus thunbergii. Plant Disease 84(6): 675-680. https://doi.org/10.1094/PDIS.2000.84.6.675
- Jensen, J.R. 2000. Remote Sensing of the Environmental : An Earth Resource Perspective. Prentice Hall. New Jersey, U.S.A. pp. 335.
- Jeon, K.S., Kim, C.S. Park, N.C. Hur, T.C., and Hong, S.C. 2011. Effects on control of pine wilt disease (Bursaphelenchus xylophilus) by thinning methods in Red Pine (Pinus densiflora) forest. Journal of Korean Society 100(2): 165-171.
- KFRI, 2006. Forest pest technical manuals. Korea Forest Research Institute. Seoul, Korea. pp. 300.
- Kim, D.S., Lee, S.M. Chung, Y.J. Choi, K.S. Moon, Y.S., and Park, C.G. 2003. Emergence ecology of Japanese Pine Sawyer. Monochanmus alternatus (ColeopteraL Cerambycidae), a vector of pinewood nematode, Bursaphelenchus xylophilus. Korean Journal of Applied Entomology 42(2): 307-313.
- Kim, E.N. and Kim, D.Y. 2008. An investigation of pine wilt damage by using ground remote sensing technique. The Korean Association of Regional Geographers 14(1): 84-92.
- Kim, J.B. Jo, M.H. Kim, I.H., and Kim, Y.K. 2003. A Study on the Extraction of Damaged Area by Pine Wood Nematode Using High Resolution IKONOS Satellite Images and GPS. Journal of Korean Forest Society 92(4): 362-366.
- Kim, J.B., Jo, M.H. Oh, J.S. Lee, K.J. Park, S.J., and Um, H.H. 2001. Temporal and spatial correlation analysis of Bursaphelenchus xylophilus damage area. in proceeding Korean Society of Agricultural and Forest Meteorology 2001 spring conference, pp. 49-52.
- Kim, M.I., Lee, W.K. Kwon, T.H. Kwak, D.A. Kim, Y.S., and Lee, S.H. 2011. Early detecting damaged trees by pine wilt disease using DI(Detection Index) from portable near unfrared camera. Journal of Korean Forest Society 100(3): 374-381.
- Kim, Y.S., Jung, S.E. Lee, W.K. Kim, J.B., and Kwon, T.H. 2008. Analyzing vegetation index change of damaged trees by pine wilt disease using portable near infrared camera. Journal of Korean society 97(6): 561-564.
- Korea Forest Service. 2011. Pine wilt disease control stratefies. Daejeon, Korea, pp. 363.
- Lee, H.Y., Koo, C.D. Sung, J.H. Shin, J.H., and Yoo, J.H. 2010. Changes in water potential of pine seedlings inoculated with Bursaphelenchus xylophilus. Journal of Korean society 99(3): 337-343.
- Mota, M.M., Braasch, H., Bravo, M.A., Penas, A.C., Burgermeister, W., Metge, K., and Sousa, E. 1999. First report of Bursaphelenchus xylophilus in Portugal and in Europe. Nematology 1(7-8): 727-734. https://doi.org/10.1163/156854199508757
- Shin, S.C. 2008. Pine wilt disease in Korea. pp. 26-32. In : B.G. Zhao, K. Futai, J.R. Sutherland, Y. Takeuchi, ed. Pine wilt disease. Springer. Japan.
- Shin, W.S. 2011. Screening of nematicidal activity using twig of pine tree against pinewood nematode, Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae). Kyungpook National University, Sangju, Korea.
- Son, M.H., Lee, W.K. Lee, S.H. Cho, H.K., and Lee, J.H. 2006. Natural spread pattern of damaged area by pine wilt disease using geostatistical analysis. Journal of Korean Forest Society 95(3): 240-249.
Cited by
- An Analysis of Spectral Pattern for Detecting Pine Wilt Disease Using Ground-Based Hyperspectral Camera vol.30, pp.5, 2014, https://doi.org/10.7780/kjrs.2014.30.5.11
- Distribution Characteristics Analysis of Pine Wilt Disease Using Time Series Hyperspectral Aerial Imagery vol.31, pp.5, 2015, https://doi.org/10.7780/kjrs.2015.31.5.3
- 무인항공기를 이용한 소나무재선충병 선단지 예찰 기법: 세종특별자치시를 중심으로 vol.106, pp.1, 2013, https://doi.org/10.14578/jkfs.2017.106.1.100
- A Machine Learning Approach to Detecting Pine Wilt Disease Using Airborne Spectral Imagery vol.12, pp.14, 2013, https://doi.org/10.3390/rs12142280