DOI QR코드

DOI QR Code

Uncertainty Assessment of Emission Factors for Pinus densiflora using Monte Carlo Simulation Technique

몬테 카를로 시뮬레이션을 이용한 소나무 탄소배출계수의 불확도 평가

  • Pyo, Jung Kee (Center of Forest and Climate Change, Korea Forest Research Institute) ;
  • Son, Yeong Mo (Center of Forest and Climate Change, Korea Forest Research Institute) ;
  • Jang, Gwang Min (Center of Forest Carbon Certification, Korea Forestry Promotion Institute) ;
  • Lee, Young Jin (Department of Forest Resources, Kongju National University)
  • 표정기 (국립산림과학원 기후변화연구센터) ;
  • 손영모 (국립산림과학원 기후변화연구센터) ;
  • 장광민 (한국임업진흥원 산림탄소인증센터) ;
  • 이영진 (공주대학교 산림자원학과)
  • Received : 2013.04.25
  • Accepted : 2013.11.01
  • Published : 2013.12.31

Abstract

The purpose of this study was to calculate uncertainty of emission factor collected data and to evaluate the applicability of Monte Carlo simulation technique. To estimate the distribution of emission factors (Such as Basic wood density, Biomass expansion factor, and Root-to-shoot ratio), four probability density functions (Normal, Lognormal, Gamma, and Weibull) were used. The two sample Kolmogorov-Smirnov test and cumulative density figure were used to compare the optimal probability density function. It was observed that the basic wood density showed the gamma distribution, the biomass expansion factor results the log-normal distribution, and root-shoot ratio showd the normal distribution for Pinus densiflora in the Gangwon region; the basic wood density was the normal distribution, the biomass expansion factor was the gamma distribution, and root-shoot ratio was the gamma distribution for Pinus densiflora in the central region, respectively. The uncertainty assessment of emission factor were upper 62.1%, lower -52.6% for Pinus densiflora in the Gangwon region and upper 43.9%, lower -34.5% for Pinus densiflora in the central region, respectively.

본 연구의 목적은 몬테 카를로 시뮬레이션을 이용하여 소나무 탄소배출계수 자료의 확률밀도를 추정하고 불확도를 제시하는데 있다. 이용된 탄소배출계수는 목재기본밀도, 바이오매스확장계수, 뿌리함량비이고 4개의 확률밀도 함수(정규분포, 로그정규분포, 감마분포, 와이불 분포)를 고려하였다. 2-표본 콜모그로프-스미르노프 검정통계량과 누적밀도그림을 비교하여 최적의 확률밀도함수를 선정하고 상한과 하한의 불확도를 제시하였다. 본 연구의 결과에 의하면, 각 탄소배출계수에서 추정된 확률밀도함수는 강원지방소나무에서 목재기본밀도는 감마분포, 바이오매스확장계수는 로그정규분포, 뿌리함량비는 정규분포이고 중부지방소나무에서 목재기본밀도는 정규분포, 바이오매스확장계수는 감마분포, 뿌리함량비는 감마분포를 나타내었다. 강원지방소나무 탄소배출계수의 불확도는 상한에서 62.1%, 하한에서 -52.6%이고 중부지방소나무는 상한에서 43.9%, 하한에서 -34.5%를 나타내었다.

Keywords

References

  1. Center for Global Environmental Research. 2011. National greenhouse gas inventory report of JAPAN. Ministry of the Environmental, Japan. pp. 41.
  2. Dagpunar, J.S. 2007. Simulation and monte carlo. John Wiley and Sons. pp. 75.
  3. Dieck, R.H. 2007. Measurement uncertainty methods and application. The instrumentation, systems, and automation society. pp. 39-62.
  4. Fan, X., Felsovalyi, Á., Sivo, S.A., and Keenan, S.C. 2001. SAS for monte carlo studies: A guide for quantitative researchers. Cary, North Carolina: SAS Institute Incorporation. pp. 26-41.
  5. Fujiwara. T., Yamashita, K., and Kuroda, K. 2007. Basic densities as a parameter for estimating the amount of carbon removal by forests and their variation. Bulletin of the Forestry and Forest Products Research Institute 6(4): 215-226.
  6. Gertner, G. 1987. Approximating precision in simulation projections: An efficient alternative to monte carlo methods. Forest Science 33(1): 230-239.
  7. Intergovernmental panel on climate change. 2000. Good practice guidance and uncertainty management in national greenhouse gas inventories. IPCC National Greenhouse Gas Inventory Programme. Institute for Global Environmental Strategies. pp. 6.1-6.23.
  8. Intergovernmental panel on climate change. 2003. Good practice guidance for land use, land-use change and forestry. IPCC National Greenhouse Gas Inventory Programme. Institute for Global Environmental Strategies. pp. 5.8-5.9.
  9. Intergovernmental panel on climate change. 2006a. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 1. General Guidance and Reporting. IPCC National Greenhouse Gas Inventory Programme. Institute for Global Environmental Strategies. pp. 3.6-3.78.
  10. Intergovernmental panel on climate change. 2006b. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4. Agriculture, Forestry and Other Land Use. IPCC National Greenhouse Gas Inventory Programme. Institute for Global Environmental Strategies. pp. 4.73.
  11. Jung, H.J. 2011. Sensitivity and uncertainty analysis of forest carbon stock changes in Korea. M.D. thesis, Graduate School of Public Health, Seoul National University. pp. 59.
  12. Kalos, M.H. and Whitlock, P.A. 2008. Monte carlo methods, second, revised and enlarged edition. WILEY-VCH Verlag GmbH and Corporation, KGaA, Weinheim. pp. 9.
  13. Kangas, A.S. and Kangas, J. 2004. Probability, possibility and evidence : approaches to consider risk and uncertainty in forestry decision analysis. Forest Policy and Economics 6: 169-188. https://doi.org/10.1016/S1389-9341(02)00083-7
  14. Korea Forest Research Institute. 2010. The carbon emission factor of major species for national inventory by forestry in Korea. Korea Forest Research Institute. pp. 7.
  15. Levy, P.E., Hale, S.E., and Nicoll, B.C. 2004. Biomass expansion factors and root:shoot ratios for coniferous tree species in Great Britain. Forestry 77(5): 421-430. https://doi.org/10.1093/forestry/77.5.421
  16. Lehtonen, A., R. Makipaa, J. Heikkinen, R. Sievanen, and J. Liski. 2004. Biomass Expansion factor (BEFs) for Scotes pine, Norway spruce and birch according to stand age for boreal forests. Forest Ecology and Management 188: 211-224. https://doi.org/10.1016/j.foreco.2003.07.008
  17. Monte, L., Lars, H., Ulla, B., John, B., and Rudie, H. 1996. Uncertainty analysis and validation of environmental models : The empirically based uncertainty analysis. Ecological Modelling 91: 139-152. https://doi.org/10.1016/0304-3800(95)00185-9
  18. Monni, S., Peltoniemi, M., Palosuo, T., Lehtonen, A., Makipaa, R., and Savolainen, I. 2007. Uncertainty of forest carbon stock changes-implications to the total uncertainty of GHG inventory of Finland. Climate Change 81: 391-413. https://doi.org/10.1007/s10584-006-9140-4
  19. Monni, S., Syri, S., and Savolainen, I. 2004. Uncertainties in the Finnish greenhouse gas emission inventory. Environmental Science and Policy 7: 87-98. https://doi.org/10.1016/j.envsci.2004.01.002
  20. Ramirez, A., Keizer, C., Sluijs, J.P., and Olivier, J. 2008. Monte carlo analysis of uncertainties in the Netherlands greenhouse gas emission inventory for 1990-2004. Atmospheric Environment 42: 8263-8272. https://doi.org/10.1016/j.atmosenv.2008.07.059
  21. Refsgaard, J.C., Jeroen, P.V.D.S., Anker, L.H., and Peter, A.V. 2007. Uncertainty in the environmental modelling process-A framework and guidance. Environmental Modelling and Software 22: 1543-1556. https://doi.org/10.1016/j.envsoft.2007.02.004
  22. SAS Institute, Incorporation. 2012. SAS/STAT 9.3 User's Guide. SAS Institute, Incorporation. Cary. North Carolina. pp. 439.
  23. Winiwarter, W. and Rypdal, K. 2001. Assessing the uncertainty associated with national greenhouse gas emission inventories: a case study for Austria. Atmospheric Environment 35: 5425-5440. https://doi.org/10.1016/S1352-2310(01)00171-6
  24. Yanai, R.D., John, J.B., Andrew, D.R., Corrie, A.B., Dustin, M.W., and Edward, B.R. 2010. Estimating uncertainty in ecosystem stock calculations. Ecosystem 13: 239-248. https://doi.org/10.1007/s10021-010-9315-8

Cited by

  1. Estimation of Forest Carbon Stocks for National Greenhouse Gas Inventory Reporting in South Korea vol.9, pp.10, 2018, https://doi.org/10.3390/f9100625