DOI QR코드

DOI QR Code

Synthesis of UV-Curable PDMS-Modified Urethane Acrylate Oligomer and Physical Properties of the Cured Film

광경화형 PDMS 변성 우레탄 아크릴레이트 올리고머 합성과 경화필름 물성에 관한 연구

  • Yeo, Jun-Seok (Department of Polymer Science & Engineering, Center for Photofunctional Energy Materials, Dankook University) ;
  • Hwang, Seok-Ho (Department of Polymer Science & Engineering, Center for Photofunctional Energy Materials, Dankook University)
  • 여준석 (단국대학교 고분자시스템공학과, 광에너지소재연구센터) ;
  • 황석호 (단국대학교 고분자시스템공학과, 광에너지소재연구센터)
  • Received : 2013.08.16
  • Accepted : 2013.08.27
  • Published : 2013.12.31

Abstract

Hydroxypropyl terminated PDMS was synthesized by the hydrosilylation reaction with allyl alcohol in the presence of Karstedt's catalyst. And them, an one-pot reaction with HDI isocyanurate trimer and hydroxyethyl methacrylate was conducted to give a silicone-modified urethane acrylate oligomer (PUA oligomer) having 9000 g/mol, weight average molecular weight. The synthesized PUA oligomer was characterized by using FT-IR and GPC. The UV-curable coatings were prepared by PUA oligomer blending with a reactive monomer (phenylthioethyl acrylate) under the different mole ratios. It was found that the refractive index of cured film increased when the reactive monomer was added but there was no relationship between the refractive index and amount of reactive monomer. Also, their transmittance for cured films was not change as increasing the content of reactive monomer.

Hydrogen terminated PDMS와 allyl alcohol를 Karstedt's 촉매 존재하에서 hydrosilylation 반응을 이용하여 hydroxypropyl terminated PDMS를 합성한 후, 3관능 HDI isocyanurate trimer와 hydroxyethyl methacrylate를 one-pot 반응으로 초분지 형태의 다관능 실리콘 변성 우레탄 아크릴레이트 올리고머(PUA 올리고머)를 합성하였다. 합성된 PUA 올리고머의 특성은 FT-IR과 GPC를 사용하여 분석하였으며, 그들의 중량평균 분자량은 약 9000 g/mol 이었다. 합성된 PUA 올리고머와 반응성 모노머인 phenylthioethyl acrylate를 여러 가지 조성비로 혼합하고 UV-광경화반응을 이용하여 연성 경화물을 제조하였다. 연성 경화물의 굴절률은 phenylthioethyl acrylate 첨가함에 따라 증가하였으나 반응성 모노머 함량과 관계가 없었다. 또한, 연성 경화필름의 광투과도 변화도 없었다.

Keywords

References

  1. S. R. Quake, and A. Schere, "From micro-to nanofabrication with soft materials", Science, 290, 1536 (2000). https://doi.org/10.1126/science.290.5496.1536
  2. J. Chen, W. Wang, J. Fang, and K. Varahramyan, "Variablefocusing microlens with microfluidic chip", J. Micromech. Microeng. 14, 675 (2004). https://doi.org/10.1088/0960-1317/14/5/003
  3. D. K. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, "Optical absorption in transparent PDMS materials applied for multimode waveguides fabrication", Opt. Mater., 30, 1157 (2008). https://doi.org/10.1016/j.optmat.2007.05.041
  4. M. Fleger, and A. Neyer, "PDMS microfluidic chip with integrated waveguides for optical detection", Microelectron. Eng., 83, 1291 (2006). https://doi.org/10.1016/j.mee.2006.01.086
  5. F. Schneider, J. Draheim, R. Kamberger, and U. Wallrabe, "Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS", Sensors Actuat. A- Phys., 151, 95 (2009). https://doi.org/10.1016/j.sna.2009.01.026
  6. D. Cai, A. Neyer, R. Kuckuk, and H. M. Heise, "Raman, mid-infrared, near-infrared and ultraviolet-visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials", J. Mol. Struct., 976, 274 (2010). https://doi.org/10.1016/j.molstruc.2010.03.054
  7. X.-H. Lee, C.-C. Lin, Y.-Y. Chang, H.-X. Chen, and C.-C. Sun, "Power management of direct-view LED backlight for liquid crystal display", Opt. Laser Technol., 46, 142 (2013). https://doi.org/10.1016/j.optlastec.2012.06.034
  8. F. Wang, J. Q. Hu, and W. P. Tu, "Study on microstructure of UV-curable polyurethane acrylate films", Prog. Org. Coat., 62, 245 (2008). https://doi.org/10.1016/j.porgcoat.2007.12.005
  9. J. H. Moon, Y. G. Shul, H. S. Han, S. Y. Hong, Y. S. Choi, and H. T. Kim, "A study on UV-curable adhesives for optical pick-up: I. Photo-initiator effects", Int. J. Adhes. Adhes., 25, 301 (2005). https://doi.org/10.1016/j.ijadhadh.2004.09.003
  10. R. Tadmor, "Line Energy and the Relation between Advancing, Receding, and Young Contact Angles", Langmuir, 20, 7659 (2004). https://doi.org/10.1021/la049410h
  11. C. Eaborn, and B. W. Bott, "Organometallic Compounds of the group IV elements", ed by A. G. MacDiarmid, Vol. 1, Chapter 2, Marcel Dekker, New York, 1968.
  12. I. Ojima, "The Chemistry of Organic Silicon Comounds", ed by S. Patai, and Z. Rappoport, Chapter 25, John Wiley, Chichestr, 1989.
  13. T. Hiyama, and T. Kusumoto, "Comprehensive Organic Synthesis", ed by B. M. Trost, and I. Fleming, Pergamon, Oxford, 1991.
  14. P. J. Lutz, and F. Peruch, "6.14 - Graft Copolymers and Comb-Shaped Homopolymers", Polym. Sci.: A Comprehensive Reference, 6, 511 (2012).
  15. Z. Wei, X. Hao, P. A. Kambouris, Z. Gan, and T. C. Hughes, "One-pot synthesis of hyperbranched polymers using small molecule and macro RAFT inimers", Polymer, 53, 1429 (2012). https://doi.org/10.1016/j.polymer.2012.02.011
  16. C Gao, and D Ya, "Hyperbranched polymers: from synthesis to applications", Prog. Polym. Sci., 29, 183 (2004) https://doi.org/10.1016/j.progpolymsci.2003.12.002
  17. Y. Hwang, and I. Lim, "Photo-Differential Scanning Calorimetry Studies of Dry Film Photoresist", Polym. Sci. Technol., 10, 107 (1999).
  18. E. W. Nelson, J. L. Jacobs, A. B. Scranton, K. S. Anseth, and C. N. Bowman, Polymer, 36, 4651 (1995). https://doi.org/10.1016/0032-3861(95)96832-S
  19. E. Andrzejewske, "Calorimetric study of photopolymerisation of divinyl monomers", Macromol. Symp., 171, 243 (2001). https://doi.org/10.1002/1521-3900(200106)171:1<243::AID-MASY243>3.0.CO;2-1
  20. T. Scherzer and U. Decker, "Real-time FTIR-ATR spectroscopy to study the kinetics of ultrafast photopolymerization reactions induced by monochromatic UV light", Vib. Spectrosc., 19, 385 (1999). https://doi.org/10.1016/S0924-2031(98)00070-8
  21. J. Hong, "A Study on the Surface Degradation and Recovery Mechanism of Silicone Rubber by Corona Discharge", MS thesis, Inha University (2005).
  22. R. J. Good and C. J. van Oss, "Modern Theory of Contact Angles and Hydrogen Bond Components of Surface Energies", ed. by M. E. Schrader and G. I. Loeb, Plenum Press, New York, p. 1 (1992).
  23. Z. Almutairi, C. L. Ren, and L. Simon, "Evaluation of polydimethylsiloxane (PDMS) surface modification approaches for microfluidic applications", Colloid. Surface. A, 415, 406 (2012). https://doi.org/10.1016/j.colsurfa.2012.10.008