DOI QR코드

DOI QR Code

DNA 마이크로어레이 프린팅을 위한 사용자 인터페이스 적용기술

Implementation of User Interface for DNA Micro Array Printing Technology

  • 박재삼 (인천대학교 전자공학과)
  • 투고 : 2013.10.01
  • 심사 : 2013.12.16
  • 발행 : 2013.12.31

초록

마이크로 어레이 기술은 유전자 네트워크의 순서 와 게놈의 통합과 같은 많은 업적을 기여하고 있으며, 이러한 기술은 유전자 발현의 패턴을 조사하기 위한 수단 등으로 잘 확립 되어있다. DNA 마이크로배열은 Affymetric 칩을 이용하여 대량의 DNA 서열을 합성 할 수 있는데 기존의 DNA 어레이 스포팅에는 일반적으로 접촉방식과 압전전자 방법등 두가지 유형이 있다. 접촉방법은 유리 슬라이드 표면과 접촉하도록 스포팅핀을 사용하는데 이 방법은 표면 매트릭스의 손상이나 상처가 발생할 수 있어 단백질이 오염 되거나 특정 결합을 방해할 위험이 있다. 반면에 압전전자 방법은 대량 생산이 가능함에도 불구하고 결과를 인쇄할 분석기가 필요하므로 현재 실험실 내에서만 수행 가능한 실정이다. 본 논문에서 유리 슬라이드 표면에 닿지 않고 지속적으로 일관성 있게 스포팅이 가능하도록 하는 진보된 방법을 제시한다.

Micro-array technology contributes numerous achievements such as ordering of gene network and integration of genomic. This technology is well established as means for investigating patterns of gene expression. DNA micro-arrays utilize Affymetric chips where a large quantity of DNA sequences may be synthesized. There are two general type of conventional DNA array spotter: contact and piezoelectric. The contact technology used spotting pin technology to make contact with the glass slide surface. This may caused damage or scratches to the surface matrix where protein will be contaminated and may not bind specifically. Piezoelectric technology available at this present time on the other hand requires the analyzer to print the result that can only be done within the laboratory despite of mass production. Therefore, in this paper, high-throughput technology is developed for providing greater consistency in feature spot without touching the glass slide surface.

키워드

참고문헌

  1. Field, S, Udalova, I & Ragoussis, J 2006, Accuracy and Reproducibility of Protein-DNA Micro array Technology, viewed 28 May 2007.
  2. Genome Resource Facility 2007, Micro array overview, viewed 28 May 2007.
  3. Peacock, C 2007, Making sense of the USB standard, Beyond Logic, viewed 1 Jun 2007.
  4. Microchip Technology Inc., viewed 8 Jun 2007
  5. Universal Serial Bus Device Class Definition for Printing Devices 2000, USB Communication Device Class Definition for Printer Devices, viewed 4 Jun 2007.
  6. Epson Stylus Photo R230 2007.
  7. eLabtronics 2006, Chore Chart, viewed 16 Jun 2007.
  8. Microsoft Developer Network 2007, CByte Function, viewed 16 Jun 2007.
  9. Lichtel, D 2004, Implementing a USB Equipment Interface Using the Microchip PIC 16C745, viewed 20 Jun 2007.
  10. Microarray Station (2006-2007), DNA Microarray History Timeline, viewed on 6 July 2007.
  11. Brooklyn Academic 2006, DNA Structure, viewed 8 July 2007.
  12. Glick, BR & Pasternak, JJ 1998, Molecular Biotechnology : principles and applications of recombinant DNA, 2ndEdition, ASM Press, Washington.
  13. Condit, R, Butler, D & Microchip Technology Inc. 2003, Low Cost USB Microcontroller Programmer: The building of the $PICkit^{TM}$ 1 FLASH Starter Kit.
  14. Hp, Le Technologies, Inc., Beaverton, Oregon Progress and Trends in Ink-jet Printing Technology, Journal of Imaging Science and Technology, Vol. 42, No. 1, pp. 49-62. 1998.
  15. Mark Schena, Renu A. Heller, Thomas P. Theriault, Ken Konrad, Eric Lachenmeier and Ronald W. Davis, Microarrays: Biotechnology's Discovery Platform for Functional Genomics, Elsevier Science Ltd, Vol. 16, Science 270, pp. 467-470, 1998.
  16. Chang-Hwan Kim, "Robust Disturbance Suppression Control for AC Servo Motors", The Journal of The Korea Institute of Electronic Communication Sciences, Vol. 7, No. 4, pp. 839-848, 2012.
  17. Won-bu Lee, Soo-hong Park, "Development of the Servo Motion controller using Gyro Sensor" The Journal of The Korea Institute of Electronic Communication Sciences, Vol. 5, No. 5, pp. 493-497, 2010.
  18. Yong-ho Jeon, Whang Cho, "Nonlinear and Adaptive Back-Stepping Speed Control of IPMSM", The Journal of The Korea Institute of Electronic Communication Sciences, Vol. 6, No. 6, pp. 855-864, 2011.