DOI QR코드

DOI QR Code

The Possibility of Gold Recovery from the Iron-Hydroxide in the Acid Mine Drainage by Lead-Fire Assay

납-시금법을 이용한 산성광산배수 철수산화물로부터 Gold 회수 가능성 연구

  • Cho, Kang-Hee (Department of Energy and Resource Engineering, Chosun University) ;
  • Kim, Bong-Ju (Department of Energy and Resource Engineering, Chosun University) ;
  • Kim, Jin-Hyung (GOLDEN SUN) ;
  • Choi, Nag-Choul (Department of Rural Systems Engineering/Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Park, Cheon-Young (Department of Energy and Resource Engineering, Chosun University)
  • 조강희 (조선대학교 에너지자원공학과) ;
  • 김봉주 (조선대학교 에너지자원공학과) ;
  • 김진형 (골든썬(주)) ;
  • 최낙철 (서울대학교 지역시스템공학과) ;
  • 박천영 (조선대학교 에너지자원공학과)
  • Received : 2013.07.29
  • Accepted : 2013.12.09
  • Published : 2013.12.28

Abstract

In order to recover gold from iron-hydroxide in acid mine drainage, a lead-fire assay has been used. Acid mine drainage is generated from mining waste rocks, and iron-hydroxide precipitates from acid mine drainage, which severely contaminates the area surrounding the mine. Iron-hydroxide samples contain on average 520.29 mg/kg of Fe, 4,414.62 mg/kg sulfur, and 16.19 mg/kg Au. In an XRD analysis, quartz and goethite were observed along with the iron-hydroxide. Using a lead-fire assay, the recovery of pure gold was on average 0.174 g/ton from the iron-hydroxide, whereas the gold not recovered in the process was on average 1.37 mg/kg. This unrecovered gold was lost to the glass slag due to the galena and lead formation. The galena and lead in the glass slag was identified through XRD.

산성광산배수로부터 형성되는 철수산화물로부터 납-시금법을 이용하여 금을 회수하고자하였다. 폐광석으로부터 산성광산배수가 생성되고 있으며 이로부터 철수산화물이 침전되어 주변지역이 심각하게 오염되고 있다. 철수산화물에는 Fe가 평균 520.29 mg/kg, 황이 평균 4,414.62 mg/kg 그리고 금이 평균 16.19 mg/kg이 각각 포함되어 있다. 철수산화물에 대하여 XRD분석을 수행한 결과 석영과 침철석이 나타났다. 철수산화물에 대하여 납-시금법을 수행한 결과 평균 0.174 g/ton의 순수한 금을 회수 하였고, 유리질 슬래그로 평균 1.37 mg/kg의 금이 손실되었다. 유리질 슬래그로 금이 손실되는 원인은 유리질 슬래그에 방연석과 납이 형성되었기 때문이다. 유리질 슬래그에 방연석과 납이 포함되어 있는 것을 XRD분석으로 확인하였다.

Keywords

References

  1. Baker, B.J. and Bafield, J.F. (2003) Microbial communities in acid mine drainage. FEMS. Microbiol. Ecol, v.44, p.139-152. https://doi.org/10.1016/S0168-6496(03)00028-X
  2. Baker, W.E. (1985) Gold analysis. URI, v.49, p.1-49.
  3. Benedetti, M. and Boulegue, J. (1991) Mechanism of gold transfer and deposition in a supergene environment. Geochim. Cosmochim. Acta, v.55, p.1539-1547. https://doi.org/10.1016/0016-7037(91)90126-P
  4. Berrodier, I., Farges, F., Benedetti, M., Winterer, M., Brown Jr, G.E. and Deveughele, M. (2004) Adsorption mechanisms of trivalent gold on iron-and aluminum-(oxy)hydroxides. Part 1: x-ray absorption and Raman scatteringspectroscopic studies of Au(III) adsorbed on ferrihydrite, goethite, and boehmite. Geochim Cosmochim Acta, v.68, p.3019-3042. https://doi.org/10.1016/j.gca.2004.02.009
  5. Bowell, R.J. and Bruce, I. (1995) Geochemistry of iron ochres and mine waters from Levant mine, Cornwall. Appl. Geochem, v.10, p. 237-250. https://doi.org/10.1016/0883-2927(94)00036-6
  6. Celep, O., Alp, I., Deveci, H. and Vicil, M. (2009) Characterization of refractory behaviour of complex gold/silver ore by diagnostic leaching. Transactions of Nonferrous Metals Society of China, v.19, p.707-713. https://doi.org/10.1016/S1003-6326(08)60337-4
  7. Cho, K.H., Kim, B.J., Wi, D.W., Oh, S.J., Choi, S.H., Sung, K.Y., Choi, N.C. and Park, C.Y. (2012) The Study on Au Losses in the Glassy Slag Duriung the Lead-fire Assay. J. KSMER, v.49, p.654-662.
  8. Enzweiler, J. and Joekes, I. (1991) Adsorption of colloidal gold on colloidal iron oxides. J. Geochem. Explor, v.40, p.133-142. https://doi.org/10.1016/0375-6742(91)90035-S
  9. Ghosh, M.M., Connor, J.T.O. and Engelbrecht, R.S. (1967) Bathophenanthroline method for the determination of ferrous iron. J. Am. Water. Works. Assoc, v.59, p.897-902. https://doi.org/10.1002/j.1551-8833.1967.tb03425.x
  10. Greffie, C., Benedetti, M.F., Parron, C. and Amouric, M. (1996) Gold and iron oxide association under supergene condition: an experimental approach. Geochim. Cosmochim. Acta, v.60, p.1531-1542. https://doi.org/10.1016/0016-7037(96)00037-3
  11. Hamilton, T.W., Ellis, J., Florence, T.M. and Fardy, J.J. (1983) Analysis of gold in surface waters from Australian goldfields: an investigation into direct hydrogeochemical prospecting for gold. Econ. Geol, v.78, p.1335-1341. https://doi.org/10.2113/gsecongeo.78.7.1335
  12. Henmi, T., Wells, N., Childs and Parfitt, R.L. (1980) Poorly-ordered iron-rich precipitates from springs and streams on andesitic volcanoes. Geochim. Cosmochim. Acta, v.44, p.365-372. https://doi.org/10.1016/0016-7037(80)90144-1
  13. Juang, R.S. and Wu, W.L. (2002) Adsorption of sulfate and copper(II) on goethite in relation to the changes of zeta potentials. J. Colloid. Interface. Sci, v.249, p.22-29. https://doi.org/10.1006/jcis.2002.8240
  14. Langhans, D., Lord, A., Lampshire, D., Burbank, A. and Baglin, E. (1995) Biooxidation of an arsenic-bearing refractory gold ore. Miner. Eng, v.8, p.147-158. https://doi.org/10.1016/0892-6875(94)00109-P
  15. Lottermoser, B.G. (2007) Mine wasters, characterizations, treatment, environmental impacts, Springer, p.394.
  16. Machemer, S.D. and Wildeman, T.R. (1992) Adsorption compared with sulfideprecipitation as metal removal process from acid mine drainage in a constructed wetland. J. Contam. Hydrol, v.9 p. 115-131. https://doi.org/10.1016/0169-7722(92)90054-I
  17. McHugh, J.B. (1988) Concentration of gold in natural waters. J Geochem Explor, v.30, p.85-94. https://doi.org/10.1016/0375-6742(88)90051-9
  18. Park, C.Y., Han, O.H., Shin, D.Y. and Hong, Y.U. (2009) Seasonal Characteristics Variation of the Geochemical Componets of Acid Mine Drainage and Yellow-colored Iron hydroxide in the Abandoned GwangYang Gold Mine, South Korea. J. KSMER, v.46, p.190-206.
  19. Park, C.Y., Jeoung, Y.J. and Choi, N.C. (1999) Geochemistry of the Yellowboy. J. KSMER, v.36, p.299-312.
  20. Park, C.Y., Jeoung, Y.J. and Kim, S.K. (2001) Mineralogy and Geochemistry of Iron Hydroxides in the Stream of Abandoned Gold Mine in Kwangyang, Korea. JKESS, v.22, p.208-222.
  21. Park, C.Y., Jeoung, Y.J. and Kim, S.K. (2002) Geochemical Characteristics of Stream Water and Sediments in the Vicinity of Abandoned Hamback Coal Mine, Korea. J. KSMER, v.39, p.35-50.
  22. Potts, P.J. (1987) A handbook of silicate rock analysis, Blackie, p.662.
  23. Schwertmann, U. and Fischer, W.R. (1973) Natural "amorphous" ferric hydroxide. Geoderma, v.10, p.237-247. https://doi.org/10.1016/0016-7061(73)90066-9
  24. Southam, G. and Beveridge, T.J. (1994) The in vitro formation of placer gold by bacteria. Geochim. Cosmochim. Acta, v.58, p.4527-4530. https://doi.org/10.1016/0016-7037(94)90355-7
  25. Suominen, M., Kontas, E. and Niskavaara, H. (2004) Comparison of silver and gold inquarting in the fire assay determination of Palladium, Platinum and Rhodium in geological samples. GEOSTAND. GEOANAL. RES, v.28, p.131-136. https://doi.org/10.1111/j.1751-908X.2004.tb01049.x
  26. Turan, A. and Yucel, O. (2011) The effect of iron and oxidizing flux addition on the ire assay of low grade pyritic refractory gold ores. J. Min. Metall. Sect. BMetall, v.47, p.219-227. https://doi.org/10.2298/JMMB110127007T
  27. Van Loon, J. (1977) Analytical chemistry of the noble metals. Pure Appl. Chem, v.49, p.1495-1505.
  28. Widler, A.M. and Seward, T.M. (2002) The adsorption of gold(1) hydrosulphide complexes by iron sulphide surfaces. Geochim. Cosmochim. Acta, v.66, p.383-402. https://doi.org/10.1016/S0016-7037(01)00791-8