DOI QR코드

DOI QR Code

Manufacturing and Physical Properties of Composite Board with Sawdust and Orange Peels

톱밥과 귤박을 이용한 혼합보드제조 및 물성

  • Oh, Seung Won (Dept. of wood Science & Technology, Institute of Agriculture Science & Technology, Chonbuk National University)
  • 오승원 (전북대학교 목재응용과학과, 농업과학기술연구소)
  • Received : 2013.06.03
  • Accepted : 2013.10.21
  • Published : 2013.11.25

Abstract

This study was carried out to explore a new application of board and obtain fundamental properties for producing composite board from sawdust and orange peels. As the mixing rate of orange peels increased from 10% to 40%, water absorption, thickness swelling, modulus of rupture and brinell hardness decreased as follows : 94.1%~86.5%, 27.2%~18.0%, $65.1kgf/cm^2{\sim}39.2kgf/cm^2$ and $195.3kgf/cm^2{\sim}180.3kgf/cm^2$, respectively. As the density of board increased from $0.4g/cm^3$ to $0.8g/cm^3$, thickness swelling, modulus of rupture and brinell hardness increased as follows: 6.4%~17.9%, $4.2kgf/cm^2{\sim}96.6kgf/cm^2$ and $40.4kgf/cm^2{\sim}196.2kgf/cm^2$, respectively. But the water absorption decreased from 149.2% to 58.6%.

본 연구는 톱밥과 귤박을 이용하여 혼합보드를 제조하여 기본 물성을 조사하였다. 혼합보드의 귤박 혼합율이 10%에서 40%로 증가함에 따라 흡수율은 94.1%에서 86.5%로, 두께 팽창율은 27.2%에서 18.0%로, 휨강도는 $65.1kgf/cm^2$에서 $39.2kgf/cm^2$로, 경도는 $195.3kgf/cm^2$에서 $180.3kgf/cm^2$로 감소하였다. 혼합보드의 밀도가 $0.4g/cm^3$에서 $0.8g/cm^3$로 증가함에 따라 흡수율은 149.2%에서 58.6%로 감소하였으나, 두께 팽창율은 6.4%에서 17.9%로, 휨강도는 $4.2kgf/cm^2$에서 $96.6kgf/cm^2$로, 경도는 $40.4kgf/cm^2$에서 $196.2kgf/cm^2$로 증가하였다.

Keywords

References

  1. Oh. S. W. 2003. Physical and mechanical properties of sawdust board made of thinning logs(II) - The effect of density and additive quantity of powder phenolic resin - Journal of the Korean Wood Science and Technology 31(3): 17-23.
  2. Rofael. E. and W. Rauch. 1972. Influence of density on the swelling behavior of phenolic-resin-bonded particleboard. Holz Roh-Werkst 30(5): 178-181. https://doi.org/10.1007/BF02614985
  3. Sun. B. C. H., R. N. Hawke, and M. R. Gale. 1994. Effect of polyisocyanate level on physical properties of wood fiber composite materials. Forest Products Journal 44(4): 53-58.
  4. Yoshida, Y., S. Kawai, Y. Imamura, K. Nishimoto, T. Satou, and M. Nakaji. 1986. Production technology for acetylated low-density particle board. I. Mechanical Properties and dimensional stability. Mokuzai Gakkaishi 32(12): 965-971.
  5. 伏谷賢美. 1985. 木材物理. 文永堂.
  6. 北原 覺一. 1977. 木材物理. 森北出版.
  7. 박금희. 2004. 톱밥. 왕겨 혼합보드로 제조한 세라믹의 물리적 및 기계적 성질. 석사학위논문.
  8. 오승원. 2002. 간벌재로 제조된 톱밥 보드의 물성(I) - 가압력 및 열압시간의 영향 - 임산 에너지 21(2): 10-16.
  9. 이필우, 윤형운, 1994. MDI (Methylene Diphenyl Diisocyanate) 수지를 이용한 톱밥 보드의 물성 (I) - 보드비중, 수지함침량, 매트함수율에 관하여. 한국가구학회지 5(2): 51-61.
  10. 축산신문. 2005. 제주양돈축협, 감귤박 사료공장추진. 961호.
  11. 한라일보. 2005. 감귤찌거기 40% 가축사료활용.

Cited by

  1. Effect of Density and Mixing Ratio of Mandarin Peels on The Bending Performance of Sawdust-Mandarin Peels Particleboards vol.43, pp.3, 2015, https://doi.org/10.5658/WOOD.2015.43.3.364
  2. Effect of Flame Resistant Treatment on The Sound Absorption Capability of Sawdust-mandarin Peel Composite Particleboard vol.43, pp.4, 2015, https://doi.org/10.5658/WOOD.2015.43.4.511
  3. Relation between the dynamic modulus of elasticity and the static modulus of elasticity, the modulus of rupture of mandarin peel–sawdust composite board vol.63, pp.6, 2017, https://doi.org/10.1007/s10086-017-1655-y