DOI QR코드

DOI QR Code

냉각탑용 직교류형 플라스틱 공기가열기의 열전달 및 압력손실

Heat Transfer and Pressure Drop Characteristics of Cross-Flow Plastic Air Heater for a Cooling Tower

  • 김내현 (인천대학교 기계시스템공학부)
  • Kim, Nae-Hyun (Division of Mechanical System Engineering, Incheon National University)
  • 투고 : 2013.08.14
  • 심사 : 2013.12.05
  • 발행 : 2013.12.31

초록

본 연구에서는 냉각탑 출구의 상대습도를 낮춰 백연을 저감하기 위한 목적으로 쉐브론형, 웨이브형 그리고 딤플형 공기가열기 시료에 대한 성능시험을 수행하였다. 실험은 시료의 전방풍속 1~3 m/s, 물 유량 0.19~0.33 kg/s 범위에서 수행되었다. 실험 결과 모든 시료에서 전열량은 전방풍속과 물 유량이 증가할수록 증가하였다. 공기측 압력손실도 풍속이 증가할수록 증가하였다. 동일 풍속에서 전열량은 쉐브론 형상에서 가장 크고 (평판의 1.5~1.7배) 딤플, 웨이브, 평판 순으로 나타났다. 소비동력 대비 전열량도 쉐브론 형상에서 딤플 형상보다 15% 정도 크게 나타났다. 하지만 다른 세 종류의 형상에서는 큰 차이를 보이지 않았다.

In this study, experiments were performed on air heater samples with three different shapes (chevron, wave and dimple type) to reduce the plumes from cooling towers. The tests were conducted for a range of frontal air velocities of 1~3 m/s and water flow rate 0.19~0.33 kg/s. The results showed that the heat transfer rate increased with increasing air velocity or water flow rate. The air-side pressure drop also increased with increasing air velocity. At the same frontal air velocity, the highest heat transfer rate was obtained for the chevron sample (1.5~1.7 times compared to that of the plate sample), followed by the dimple, wave and plate samples. The heat transfer rate per unit power consumption was also 15% larger than that of the dimple sample. On the other hand, there was no noticeable difference between the other samples.

키워드

참고문헌

  1. S. M. Zivi and B. B. Brand, An Analysis of the Cross-flow Cooling Tower, Refrigeration Engineering, Vol. 64, pp. 31-34 and 90-92, 1956.
  2. D. R. Baker and H. A. Shryock, A Comprehensive Approach to the Analysis of Cooling Tower Performance, J. Heat Transfer, Vol. 83, pp. 339-349, 1961. https://doi.org/10.1115/1.3682276
  3. J. C. Campbell, The Prevention of Fog from Cooling Towers, Annual Meeting of the Coolìng Tower Institute, Houston, 1976.
  4. C. K. Choi., Y. K. Choi., and H. Y. So., A Numerical Study on the Performance Analysis of the Plume Abatement NWD Cooling Tower, Korean J. Air-Conditioning and Refrigeration Engineering, Vol. 11. pp. 1049-1058. 2001.
  5. Clearflow Application, Users Manual, Marley Cooling Technologies Inc, 2005.
  6. A. Cooper and J. D. Usher, Plate Heat Exchangers, in Heat Exchanger Design Handbook, Hemisphere Publisher, New York, Chap. 3.7, 1983.
  7. M. Ciafalo, J. Stasiek and M. W. Collins, Investigation of Flow and Heat Transfer in Corrugated Passages, Int. J. Heat Mass Transfer, Vol. 39, pp. 165-192. 1996. https://doi.org/10.1016/S0017-9310(96)85014-9
  8. B. Sunden, Flow and Heat Transfer Mechanisms in Plate-Frame Heat Exchangers, in Heat Transfer Enhancement of Heat Exchangers, Kluwer Academic Pub., pp. 185-206, 1999.
  9. K. H. Lee, W. Y. Choi, J. H. Lee and H. Y. So, Comparison of performance of cooling water with various shape of packings, Korean J. Air-Conditioning and Refrigeration Engineering, Vol. 10, pp. 358-367, 1998.
  10. E. J. Lee, J. S. Kim and N. H. Kim, Performance comparison of heat transfer plates for cooling tower air heater through numerical analysis, J. Korea Academia-Industrial Cooperation Society, Vol. 13, No. 12, pp. 5676-5683, 2012. DOI: http://dx.doi.org/10.5762/KAIS.2012.13.12.5676
  11. S. Y. Yoo, M. H. Chung, K. H. Kim and J. M. Lee, An Experimental Study on the Performance of Plastic Plate Heat Exchanger, Korean J. Air-Conditioning and Refrigeration Engineering, Vol. 17, pp. 117-124, 2005.
  12. S. Y. Yoo, M. H. Chung and Y. M. Lee, A Study on the Factors Affecting the Performance of Plastic Plate Heat Exchanger, Korean J. Air-Conditioning and Refrigeration Engineering, Vol. 17, pp. 839-848, 2005.
  13. M. H. Chung, S. Y. Yoo, K. H. Han and H. I. Yoon, A Numerical Study on the Flow and Heat Transfer Characteristics of Plastic Plate Heat Exchanger, Proceedings of the Summer Annual Conference, SAREK, pp. 1366-1371, 2008.
  14. M. Kim, J.-H. Lee, S. R. Park, H. S. Ra, J. H. Jeong and H. Lim, Experimental Investigation of an Cross-Flow Air-Cooled Heat Exchanger with Single-Wave and Double-Wave Plates, Korean J. Air-Conditioning and Refrigeration Engineering, Vol. 21, pp. 347-354,
  15. H. J. Ahn, S. H. Lee, N. Hur, H. J. Park and H. S. Ryu, 2010, A Numerical Simulation of Flow and Heat Transfer in a Dimpled-Type Plate Heat Exchanger, Korean J. Air-Conditioning and Refrigeration Engineering, Vol. 22, pp. 149-155, 2009.
  16. R. L. Webb and N. H. Kim, 2005, Principles of Enhanced Heat Transfer, Taylor and Francis Pub.
  17. ASHRAE Standard 41.1, Standard Method for Temperature Measurement, ASHRAE, 1986.
  18. ASHRAE Standard 41.2, Standard Method for Laboratory Air-Flow Measurement, ASHRAE, 1987.
  19. ASHRAE Standard 41.5, Standard Measurement Guide, Engineering Analysis of Experimental Data, 1975.