DOI QR코드

DOI QR Code

The Design and Experiment of Power Factor Improvement Circuit for a Underwater Electro Acoustic Transducer with Low Coupled Dual Resonances

상호 결합이 적은 두 개의 공진점을 갖는 수중용 광대역 전기 음향 변화기를 위한 역률 개선 회로 설계 및 실험

  • 임준석 (세종대학교 전자공학과) ;
  • 편용국 (강원도립대학교 정보통신공학과)
  • Received : 2013.09.30
  • Accepted : 2013.12.09
  • Published : 2013.12.31

Abstract

In the design of underwater electro acoustic transducer, power factor improvement circuit is more required rather than impedance matching if the driving power amplifier has little inner resistance. Many research results have been focused on the power matching circuit designing for transferring maximum power in the wideband. There are few results in the designing study on the power factor improvement for the wide band underwater electro acoustic transducer. In this paper, we set up a new design method on the power factor improvement for the wide band electro acoustic transducer, and confirm its feasibility by the experiments.

수중용 전기 음향 변환기용 외부 회로를 구성할 때, 파워 앰프의 내부저항이 매우 작은 경우 정합 회로를 구성하기 보다는 부하측의 역률을 개선하는 것을 선호 한다. 기존 연구의 결과를 살펴보면 광대역에서 최대 파워를 전달하게 하는 정합회로를 구하는 방법을 많이 연구되어 왔으나, 두 개의 공진점을 갖는 수중용 광대역 전기 음향 변화기에 적용할 만한 광대역 역률 개선 튜닝 회로를 구성하는 방법은 논문화된 결과는 드물다. 본 논문에서는 기존의 정합회로 설계에서 사용하는 체비세프 설계법을 기본으로 하여, 좀 더 낫은 결과를 가질 수 있도록 하는 복합 최적화 과정을 바탕으로 역률 개선 회로를 설계하고 이를 실험을 통하여 역율 개선을 확인한다.

Keywords

References

  1. J.-S. Park, S. Kim, H. Ku, J. Hur, H. Mok, M.-J. Yu, and K.-Y. Lee, "Design of sonar wake detection receiver," in Proc. Inst. Electron. Eng. Korea (IEEK) Conf. SOC (IEEK SOC 2008), pp. 148-151, PyoungChang, Korea, Feb. 2008.
  2. N.-H. Cho, D.-Y. Kim, Y.-D. Kim, and Y. Chung, "Design of QPSK ultrasonic transceiver for underwater communication," J. Inst. Electron. Eng. Korea (IEEK), vol. 43, no. 3, pp. 51-59, May 2006.
  3. F. Issa, M. Goldberg, H. Li, and S. Rowland, "Wideband impedance matching using Tchebycheff gain functions," in Proc. Int. Symp. Power Line Commun. Its Applicat. (ISPLC 2005), pp. 278-280, Vancouver, Canada, Apr. 2005.
  4. H. J. Carlin and P. Amstutz, "On optimum broad band matching," IEEE Trans. Circuit Syst., vol. 28, no. 5, pp. 401-405, May 1981. https://doi.org/10.1109/TCS.1981.1085001
  5. E. H. Newman, "Real frequency wide-band impedance matching with nonminimum reactance equalizers," IEEE Trans. Antennas Propag., vol. 53, no. 11, pp. 3597-3603, Nov. 2005. https://doi.org/10.1109/TAP.2005.858816
  6. B. K. Chung, "Q-based design method for T network impedance matching," Microelectron. J., vol. 37, no. 9, pp. 1007-1011, Sep. 2006. https://doi.org/10.1016/j.mejo.2006.01.019
  7. R. Liao, J. Tan, and H. Wang, "Q-based design method for impedance matching network considering load variation and frequency drift," Microelectron. J., vol. 42, no. 2, pp. 403-408, Feb. 2011. https://doi.org/10.1016/j.mejo.2010.09.013
  8. J.-S. Lim and Y.-G. Pyeon, "Power factor compensation for wideband acoustic projector using measurement data and ABCD matrix," J. Inst. Electron. Eng. Korea (IEEK), vol. 48, no. 3, pp. 10-15, Sep. 2011.
  9. Y.-C. Chen, S. Wu, and P.-C. Chen, "The impedance-matching design and simulation on high power elctro-acoustical transducer," Sensors and Actuators A: Physical, vol. 115, no. 1, pp. 38-45, Jan. 2004. https://doi.org/10.1016/j.sna.2004.01.063
  10. J.-M. Lee, B.-H. Lee, and K.-R. Baek, "Design of isolation-type matching network for underwater acoustic piezoelectric transducer using Chebyshev filter function," J. Acoust. Soc. Korea, vol. 28, no. 6, pp. 491-498, Sep. 2009.
  11. J.-S. Lim and Y.-G. Pyeon, "A systematic power factor improvement method for an electro acoustic transducer with low coupled dual resonances," J. Acoust. Soc. Korea, vol. 31, no. 7, pp. 480-486, Oct. 2012. https://doi.org/10.7776/ASK.2012.31.7.480
  12. F. F. Kuo, Network Analysis and Synthesis, Wiley, 1966.
  13. C. Deholiian and J. Neirynck, "Broadband matching of an RLC load by optimal Chebyshev gain function," in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS '95), vol. 3, pp. 1648-1651, Santa Margherita, Italy, May 1995.
  14. S. Chhith and Y. Roh, "Wideband Tonpilz transducer with a cavity inside a head mass," Japanese J. Appl. Physics, vol. 49, no. 10, pp. 1-5, Oct. 2010.