DOI QR코드

DOI QR Code

소형 셀 환경에서 유틸리티 최대화를 위한 분산화된 방법의 기지국 전송 전력 제어

Distributed BS Transmit Power Control for Utility Maximization in Small-Cell Networks

  • 이창식 (KAIST 전기 및 전자공학과 네트워크시스템 연구실) ;
  • 김지환 (KAIST 전기 및 전자공학과 네트워크시스템 연구실) ;
  • 곽정호 (KAIST 전기 및 전자공학과 네트워크시스템 연구실) ;
  • 김은경 ;
  • 정송 (KAIST 전기 및 전자공학과 네트워크시스템 연구실)
  • 투고 : 2013.10.21
  • 심사 : 2013.12.19
  • 발행 : 2013.12.31

초록

최근 많은 수의 모바일 유저와 과도한 트래픽 증가를 해결하기 위한 솔루션으로 피코 혹은 펨토 셀과 같은 소형 셀을 설치하는 방법이 주목 받고 있다. 그러나 소형 셀에 속한 엣지 유저들은 주변 기지국으로부터 극심한 셀간 간섭을 받기 때문에 낮은 평균 전송률을 얻게 되고, 이를 해결하기 위해서는 셀 간 간섭을 효과적으로 관리하는 방법이 필요하다. 최근의 많은 연구들은 셀 간 간섭 관리를 위해 기지국의 전송 전력을 제어하는 알고리즘을 제시하였지만, 제시된 방법들은 높은 복잡도를 가지고 중앙 기지국의 도움을 필요로 한다는 단점이 있다. 본 연구에서는 기지국간의 경쟁을 기반으로 하여, 낮은 복잡도를 가지는 분산화된 방법의 기지국 전송 전력 on/off 제어 및 유저 스케줄링 알고리즘을 제안한다. 시뮬레이션 결과를 통해, 제안하는 방법이 셀 간 간섭 관리를 하지 않는 방법에 비해 셀 엣지 유저의 경우 170%의 성능 개선을 보이고, 최적의 알고리즘과 비교 했을 때 88-96%에 달하는 geometric average throughput (GAT) 성능 및 매우 근접한 average edge user throughput (AET) 성능을 보임을 검증한다.

Small cells such as pico or femto cells are promising as a solution to cope with higher traffic explosion and the large number of users. However, the users within small cells are likely to suffer severe inter-cell interference (ICI) from neighboring base stations (BSs). To tackle this, several papers suggest BS transmit power on/off control algorithms which increase edge user throughput. However, these algorithms require centralized coordinator and have high computational complexity. This paper makes a contribution towards presenting fully distributed and low complex joint BS on/off control and user scheduling algorithm (FDA) by selecting on/off pattern of BSs. Throughput the extensive simulations, we verify the performance of our algorithm as follows: (i) Our FDA provides better throughput performance of cell edge users by 170% than the algorithm without the ICI management. (ii) Our FDA catches up with the performance of optimal algorithm by 88-96% in geometric average throughput and sufficiently small gap in edge user throughput.

키워드

참고문헌

  1. V. Chandrasekhar, J. G. Andrews, and A. Gatherer, "Femtocell networks: a survey," IEEE Commun. Mag., vol. 46, no. 9, pp. 59-67, Sep. 2008. https://doi.org/10.1109/MCOM.2008.4623708
  2. K. Son, Y. Yi, and S. Chong, "Adaptive multi-pattern reuse in multi-cell networks," in Proc. Int. Conf. Modeling, Optimization Mobile, Ad hoc, Wireless Networks (WiOPT), pp. 1-10, Seoul, Korea, June 2009.
  3. A. Gjendemsj, D. Gesbert, G. E. Oien, and S. G. Kiani, "Binary power control for sum rate maximization over multiple interfering links," IEEE Trans. Wireless Commun., vol. 7, no. 8, pp. 3164-3173, Aug. 2008. https://doi.org/10.1109/TWC.2008.070227
  4. K. Son, Y. Yi, and S. Chong, "Utility optimal multi-pattern reuse in multicell networks," IEEE Trans. Wireless Commun., vol. 10, no. 1, pp. 142-153, Jan. 2011. https://doi.org/10.1109/TWC.2010.110310.091778
  5. J.-W. Cho, J. Mo, and S. Chong, "Joint network-wide opportunistic scheduling and power control in multi-cell networks," IEEE Trans. Wireless Commun., vol. 8, no. 3, Mar. 2009.
  6. R. Giuliano, C. Monti, and P. Loreti, "WiMAX fractional frequency reuse for rural environments," IEEE Commun. Mag., vol. 15, no. 3, pp. 60-65, June 2008.
  7. K. Son, S. Chong, and G. de Veciana, "Dynamic association for load balancing and interference avoidance in multi-cell networks," IEEE Trans. Wireless Commun., vol. 8, no. 7, pp. 3566-3576, July 2009. https://doi.org/10.1109/TWC.2009.071140
  8. C. U. Saraydar and A. Yener, "Adaptive cell sectorization for CDMA systems," IEEE J. Sel. Areas Commun., vol. 19, no. 6, pp. 1041-1051, June 2001. https://doi.org/10.1109/49.926360
  9. C. Y. Lee, H. G. Kang, and T. Park, "Dynamic sectorization of microcells for balanced traffic in CDMA: Genetic algorithms approach," IEEE Trans. Veh. Technol., vol. 51, no. 1, pp. 63-72, Jan. 2002. https://doi.org/10.1109/25.992068
  10. J. Liu, Y. Yi, A. Proutiere, M. Chiang, and H. V. Poor, "Convergence and tradeoff of utility-optimal CSMA," Submitted to IEEE Commun. Lett., [Online]. Available: http://arxiv.org/abs/0902.1996
  11. L. Jiang and J. Walrand, "A distributed CSMA algorithm for throughput and utility maximization in wireless networks," in Proc. 46th Annu. Allerton Conf. Commun., Control, Comput., pp. 1511-1519, Urbana-Champaign, U.S.A., Sep. 2008.
  12. J. Ni, B. Tan, and R. Srikant, "Q-CSMA: Queue length based CSMA/CA algorithms for achieving maximum throughput and low delay in wireless networks," in Proc. IEEE INFOCOM, pp. 1-5, San Diego, U.S.A., Mar. 2010.
  13. H.-H. Choi, "Carrier Sensing Multiple Access with Collision Resolution (CSMA/CR) protocol for next-generation wireless LAN," J. Korea Inform. Commun. Soc. (KICS), vol. 38, no. 1, pp. 33-43, Dec. 2012. https://doi.org/10.7840/kics.2013.38A.1.33
  14. A. J. Goldsmith and S.-G. Chua, "Variable-rate variable-power mqam for fading channels," IEEE Trans. Commun., vol. 45, no. 10, pp. 1218-1230, Oct. 1997. https://doi.org/10.1109/26.634685
  15. J. Mo and J. Walrand, "Fair end-to-end window-based congestion control," IEEE/ACM Trans. Networking, vol. 8, no. 5, pp. 556-567, Oct. 2000. https://doi.org/10.1109/90.879343
  16. A. L. Stolyar, "On the asymptotic optimality of the gradient scheduling algorithm for multiuser throughput allocation," Operations Research, vol. 53, no. 1, pp. 12-25, Jan. 2005. https://doi.org/10.1287/opre.1040.0156
  17. 3GPP TSG Working Group 4 meeting, Home NodeB Output Power, TSG-RAN WG1 Contribution R4-070 969, June 2007. [Online]. Available: http://www.3gpp.org/ftp/tsgran/WG4Radio/TSGR443bis/Docs/.
  18. Ofcom, Sitefinder: Mobile phone base station database, [Online]. Available: http://www.sitefinder.ofcom.org.uk/.