DOI QR코드

DOI QR Code

Interference Neutralization for Small-Cell Wireless Networks

스몰셀 무선망 간섭 상쇄 기법 연구

  • 전상운 (국립안동대학교 정보통신공학과) ;
  • 정방철 (국립경상대학교 정보통신공학과)
  • Received : 2013.10.08
  • Accepted : 2013.12.16
  • Published : 2013.12.31

Abstract

As the recently soaring wireless traffic, small-cell techniques have been actively studied in order to support such a wireless demand for cellular wireless networks. This paper focuses on the inter-cell interference neutralization to resolve the main barrier for implementing small-cell cellular networks. Assuming that each message is delivered to the final destination by the help of base stations or relays, ergodic interference neutralization is proposed, which exploits the time-varying nature of wireless channels. The previous approach based on amplify-and-forward (AF) suffers from severe performance degradation in the low signal-to-noise (SNR) regime due to noise amplification. On the other hand, the proposed interference neutralization based on recently developed compute-and-forward (CF) fixes such a problem and improves the performance in the low SNR regime.

최근 무선트래픽 수요가 폭발적으로 증가하면서 셀룰라 무선망에서 이를 효율적으로 지원하기 위한 스몰셀 연구가 활발히 수행중이다. 본 논문은 스몰셀 구현의 가장 큰 걸림돌인 다중셀 간섭을 효율적으로 해결하기 위한 간섭상쇄 기법에 대해 연구하였다. 각 사용자의 메시지가 기지국 혹은 릴레이를 통하여 전달되는 경우, 무선채널의 시변특성을 이용한 간섭상쇄 기법을 제안하였다. Amplify-and-forward (AF) 에 기반한 기존 접근방식은 잡음증폭 특성으로 인하여 신호대잡음비가 낮은 영역에서는 심한 성능열화를 보였다. 본 논문은 최근 개발된 compute-and-forward (CF) 에 기반한 간섭상쇄를 제안하여 이러한 문제를 해결하고 신호대잡음비가 작은 영역에서 전송율을 크게 개선하였다.

Keywords

References

  1. J. Hoydis, M. Kobayashi, and M. Debbah, "Green small-cell networks," IEEE Veh. Technol. Mag., vol. 6, no. 1, pp. 37-43, Mar. 2011. v https://doi.org/10.1109/MVT.2010.939904
  2. A. Ghosh, N. Mangalvedhe, R. Ratasuk, B. Mondai, M. Cudak, E. Visotsky, T. A. Thomas, J. G. Andrews, P. Xia, H. S. Jo, H. S. Dhillon, and T. D. Novian, "Heterogeneous cellular networks: From theory to practice," IEEE Commun. Mag., vol. 50, no. 6, pp. 54-64, June 2012.
  3. R. H. Etkin, D. N. C. Tse, and H. Wang, "Gaussian interference channel capacity to within one bit," IEEE Trans. Inf. Theory, vol. 54, no. 12, pp. 5534-5562, Dec. 2008. https://doi.org/10.1109/TIT.2008.2006447
  4. V. R. Cadambe and S. A. Jafar, "Interference alignment and degrees of freedom of the K-user interference channel," IEEE Trans. Inf. Theory, vol. 54, no. 8, pp. 3425-3441, Aug. 2008. https://doi.org/10.1109/TIT.2008.926344
  5. C. Suh, M. Ho, and D. N. C. Tse, "Downlink interference alignment," IEEE Trans. Commun., vol. 59, no. 9, pp. 2616-2626, Sep. 2011. https://doi.org/10.1109/TCOMM.2011.070511.100313
  6. C. Suh and D. N. C. Tse, "Interference alignment for cellular networks," in Proc. 46th Annu. Allerton Conf. Commun., Control, Comput., pp. 1037-1044, Urbana-Champaign, U.S.A.,, Sep. 2008.
  7. S.-W. Jeon and S.-Y. Chung, "Capacity of a class of linear binary field multisource relay networks," IEEE Trans. Inf. Theory, vol. 59, no. 10, pp. 6405-6420, Oct. 2013. https://doi.org/10.1109/TIT.2013.2268921
  8. T. Gou, S. A. Jafar, C. Wang, S.-W. Jeon, and S.-Y. Chung, "Aligned interference neutralization and the degrees of freedom of the 2x2x2 interference channel," IEEE Trans. Inf. Theory, vol. 58, no. 7, pp. 4381-4395, July 2012. https://doi.org/10.1109/TIT.2012.2191388
  9. S.-W. Jeon, S.-Y. Chung, and S. A. Jafar, "Degrees of freedom region of a class of multisource Gaussian relay networks," IEEE Trans. Inf. Theory, vol. 57, no. 5, pp. 3032-3044, May 2011. https://doi.org/10.1109/TIT.2011.2119750
  10. S.-W. Jeon, C.-Y. Wang, and M. Gastpar, "Approximate ergodic capacity of a class of fading 2-user 2-hop networks," Submitted to IEEE Trans. Inf. Theory, [Online]. Available: http://arxiv.org/abs/1210.2182, Oct. 2012.
  11. J. Shin, "Non-robust and robust regularized zero-forcing interference alignment methods for two-cell MIMO interfering broadcast channels," J. Korea Inform. Commun. Soc. (KICS), vol. 38A, no. 7, pp. 560-570, July 2013. https://doi.org/10.7840/kics.2013.38A.7.560
  12. B. Nazer and M. Gastpar, "Compute-and-forward: Harnessing interference through structured codes," IEEE Trans. Inf. Theory, vol. 57, no. 10, pp. 6463-6486, Oct. 2011. https://doi.org/10.1109/TIT.2011.2165816
  13. B. Nazer and M. Gastpar, "Reliable physical layer network coding," Proc. IEEE, vol. 99, no. 3, pp. 438-460, Mar. 2011. https://doi.org/10.1109/JPROC.2010.2094170
  14. U. Nissen and P. Whiting, "The degrees of freedom of compute-and-forward," IEEE Trans. Inf. Theory, vol. 58, no. 8, pp. 5214-5232, Aug. 2012. https://doi.org/10.1109/TIT.2012.2197720
  15. S.-W. Jeon, C.-Y. Wang, and M. Gastpar, "Computation over Gaussian networks with orthogonal components," Submitted to IEEE Trans. Inf. Theory, [Online]. Availalbe:http://arxiv.org/abs/1310.7112, Oct. 2013.
  16. C.-Y. Wang, S.-W. Jeon, and M. Gastpar, "Interactive computation of type-threshold functions in collocated broadcast-superposition networks," Submitted to IEEE Inf. Theory, [Online]. Available: http://arxiv.org/abs/1310.2860, Oct. 2013.