DOI QR코드

DOI QR Code

Wireless LAN Based Indoor Positioning Using Received Signal Fingerprint and Propagation Prediction Model

수신 신호 핑거프린트와 전파 예측 모델을 이용한 무선랜 기반 실내 위치추정

  • 김현수 (한국항공대학교 항공전자및정보통신공학부 정보통신공학전공) ;
  • 배지민 (한국항공대학교 항공전자및정보통신공학부 정보통신공학전공) ;
  • 최지훈 (한국항공대학교 항공전자및정보통신공학부 정보통신공학전공)
  • Received : 2013.09.02
  • Accepted : 2013.11.11
  • Published : 2013.12.31

Abstract

In this paper, we propose a new indoor location estimation method which combines the fingerprint technique with the propagation prediction model. The wireless LAN (WLAN) access points (APs) deployed indoors are divided into public APs and private APs. While the fingerprint method can be easily used to public APs usually installed in fixed location, it is difficult to apply the fingerprint scheme to private APs whose location can be freely changed. In the proposed approach, the accuracy of user location estimation is improved by simultaneously utilizing public and private APs. Specifically, the fingerprint method is used to the received signals from public APs and the propagation prediction model is employed to the signals from private APs. The performance of the proposed method is compared with that of conventional indoor location estimation schemes through measurements and numerical simulations in WLAN environments.

본 논문에서는 핑거프린트(fingerprint)기법과 전파 예측 모델을 결합한 무선랜 기반 실내 위치추정 기법을 제안한다. 실내에 설치된 무선랜 AP(access point)는 공용 AP와 사설 AP로 구분되고, 설치 위치가 고정된 공용 AP의 경우 핑거프린트 방식을 적용하기 용이하지만 사설 AP의 경우 위치가 임의로 변경될 수 있으므로 핑거프린트 방식을 적용하기 힘들다. 제안된 방식에서는 공용 AP로부터 수신된 신호에 핑거프린트 방식을 적용하고, 사설 AP로부터 수신된 신호에 전파 예측 모델을 적용하여 공용 AP와 사설 AP를 모두 이용함으로써 위치 추정 정확도를 높인다. 무선랜 환경에서의 데이터 실측과 모의실험을 통해 기존 실내 위치 추정 방식과 제안된 방식의 성능을 비교한다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. D. S. Kim and S. W. Kim, "Hybrid TDOA/RSSI localization method for indoor positioning systems," in Proc. Korea Inform. Commun. Soc. (KICS) Summer Conf., pp. 1714-1717, Jeju Island, Korea, June 2009.
  2. G. Sun, J. Chen, W. Guo, and K. J. R. Liu, "Signal processing techniques in network-aided positioning: a survey of state-of-the-art positioning designs," IEEE Signal Process. Mag., vol. 22, no. 4, pp. 12-23, July 2005.
  3. H. Liu, H. Darabi, and J. Banerjee, and J. Liu, "Survey of wireless indoor positioning techniques and systems," IEEE Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 37, no. 6, pp. 1067-1080, Nov. 2007. https://doi.org/10.1109/TSMCC.2007.905750
  4. W. Y. Hwang and C. Y. Choi, "Implementation of WLAN based indoor positioning system using fingerprint," in Proc. Korea Inform. Commun. Soc. (KICS) Fall Conf., pp. 267-270, Gangneung, Korea, Nov. 2007.
  5. K. Kaemarungsi and P. Krishnamurthy, "Modeling of indoor positioning systems based on location fingerprinting," in Proc. IEEE INFOCOM, vol. 2, pp. 1012-1022, Hong Kong, China, Mar. 2004.
  6. P. Bahl and V. N. Padmanabhan, "RADAR: An in-building RF-based user location and tracking system," in Proc. IEEE INFOCOM, vol. 2, pp. 775-784, Tel Aviv, Israel, Mar. 2000.
  7. J.-S. Leu and H.-J. Tzeng. "Received signal strength fingerprint and footprint assisted indoor positioning based on ambient Wi-Fi signals," in Proc. IEEE Veh. Technol. Conf. (VTC Spring), pp. 1-5, Yokohama, Japan, May 2012.
  8. R. Hansen, R. Wind, C. S. Jensen, and B. Thomsen, "Algorithmic strategies for adapting to environmental changes in 802.11 location fingerprinting," in Proc. IEEE Indoor Positioning Indoor Navigation (IPIN), pp. 1-10, Zurich, Switzerland, Sep. 2010.
  9. T. He, C. Huang, B. M. Blum, J. A. Stankovic, and T. Abdelzaher, "Range free localization shemes in large scale sensor networks." in Proc. Annu. Int. Conf. Mobile Comput. Networking (MobiCom '03), pp. 81-95, San Diego, U.S.A., Sep. 2003.
  10. W. Meng, Y. He, Z. Deng, and C. Li, "Optimized access points deployment for WLAN indoor positioning system," in Proc. IEEE Wireless Commun. Networking Conf. (WCNC), pp. 2457-2461, Shanghai, China, Apr. 2012.
  11. M. I. Ji, Y. S. Cho, S. J. Park, and D. S. Lim, "Wi-Fi based indoor location estimation technology development trend," Inform. Commun. (KICS Mag.), vol. 28, no. 7, pp. 52-58, June 2011.
  12. R. J. Fontana and S. J. Gunderson, "Ultra-wideband precision asset location system," in Proc. IEEE Conf. Ultra Wideband Syst. Technol., pp. 147-150, Baltimore, U.S.A., May 2002.
  13. M. G. Lee, Y. K. Park, and K. K. Jung, "Implementation of zone-based indoor location tracking system using bluetooth," in Proc. Inst. Electron. Eng. Korea (IEEK) Inform. Control Symp. (ICS), pp. 163-164, Seoul, Korea, Apr. 2013.
  14. C. H. Lee, Y. Chang, and G. H. Park, "Indoor positioning system based on incident angles of infrared emitters," in Proc. Annu. Conf. IEEE Ind. Electron. Soc. (IECON 2004), vol. 3, pp. 2218-2222, Busan, Korea, Nov. 2004.
  15. T. S. Rappaport, Wireless communications: principles and practice, Prentice Hall, 1996.
  16. IEEE Std 802.11-2007, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Computer Society, June 2007.