DOI QR코드

DOI QR Code

Role of a Phytotoxin Produced by Fusarium oxysporum f. sp. raphani on Pathogenesis of and Resistance to the Fungus

무 시들음병균이 생산하는 Phytotoxin의 병원성 및 저항성에서 역할

  • Shim, Sun-Ah (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Kim, Jin-Cheol (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Jang, Kyoung Soo (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Choi, Yong Ho (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology) ;
  • Kim, Heung Tae (Department of Plant Medicine, Chungbuk National University) ;
  • Choi, Gyung Ja (Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology)
  • 심선아 (한국화학연구원 바이오화학연구센터) ;
  • 김진철 (한국화학연구원 바이오화학연구센터) ;
  • 장경수 (한국화학연구원 바이오화학연구센터) ;
  • 최용호 (한국화학연구원 바이오화학연구센터) ;
  • 김흥태 (충북대학교 식물의학과) ;
  • 최경자 (한국화학연구원 바이오화학연구센터)
  • Received : 2013.04.09
  • Accepted : 2013.06.07
  • Published : 2013.09.30

Abstract

In the course of a developing screening method for resistant radish to Fusarium oxysporum f. sp. raphani, we found that the fungus produces phytotoxic compound against Raphanus sativus. The culture filtrate of F. oxysporum f. sp. raphani KR1 represented the strongest phytotoxicity when the fungus was incubated in the malt extract broth with 150 rpm at $25^{\circ}C$ for 14 days. Under bioassay-guided purification, we isolated a substance from liquid culture of F. oxysporum f. sp. raphani KR1, with phytotoxic effect against R. sativus. The compound was identified as fusaric acid by mass and nuclear magnetic resonance spectral analyses. Phytotoxicity of the compound against cruciferous vegetable crops, including radish, cabbage, and broccoli, was investigated. Fusaric acid represented phytotoxicity on radish seedlings by concentration dependant manner. And the phytotoxin demonstrated strong phytotoxicity on the resistant cultivars as well as susceptible cultivars of radish to F. oxysporum f. sp. raphani. In addition, fusaric acid isolated from the fungus also showed a potent phytotoxic efficacy against non-host Brassicaceae crops of the fungus such as cabbage and broccoli. The results demonstrate that fusaric acid produced by F. oxysporum f. sp. raphani is non-host-specific toxin and for screening of resistant radish to the fungal pathogen, spore suspension of the fungus without the phytotoxin has to be used.

무 시들음병에 대한 저항성 검정 체계를 확립하기 위하여 실험하는 과정에서 병원균인 Fusarium oxysporum f. sp. raphani가 무 유묘에 독성(phytotoxicity)을 일으키는 독소(phytotoxin)를 생산한다는 것을 발견했다. F. oxysporum f. sp. raphani KR1 균주는 여러 배지 중 malt extract broth 배지에서 배양하였을 때 그리고 $25^{\circ}C$에서 14일 동안 150rpm으로 진탕배양하였을 때 가장 많은 독소를 생산하였다. 무에 대한 독성 반응을 이용하여 F. oxysporum f. sp. raphani의 배양액으로부터 phytotoxin을 분리하였다. 그리고 Mass와 NMR Spectroscopy 분석을 통하여 이 화합물은 fusaric acid로 동정되었다. 독소의 역할을 규명하기 위하여 fusaric acid를 무, 양배추, 브로콜리 등 F. oxysporum f. sp. raphani의 기주 및 비기주 배추과 작물에 대한 독소 활성을 조사하였다. Fusaric aicd는 무 유묘에 대하여 농도 의존적으로 활성을 보였으며, F. oxysporum f. sp. raphani에 대한 감수성 품종뿐만 아니라 저항성 품종에 대해서도 유사한 정도의 독성을 나타냈다. 그리고 F. oxysporum f. sp. raphani가 생산하는 fusaric acid는 병원균의 비기주 배추과 작물인 양배추와 브로콜리에 대해서도 강한 활성을 보였다. 따라서 이들 결과는 이 독소가 병원성 관련 독소이나 비기주 특이적 독소이며, 무 시들음병 저항성 검정에서 이 독소가 제거된 포자현탁액을 접종원으로 사용해야 한다는 것을 나타낸다.

Keywords

References

  1. Abbas, H.K., C.D. Boyette, R.E. Hoagland, and R.F. Vesonder. 1991. Bioherbicidal potential of Fusarium moniliforme and its phytotoxin, fumonisin. Weed Sci. 39:673-677.
  2. Agrios, G.N. 2005. Genetics of plant disease, p. 163-164. In: Plant Pathology. 5th ed. Elsevier Academic Press, Burlington, USA.
  3. Amalfitano, C., R. Pengue, A. Andolfi, M. Vurro, M.C. Zonno, and A. Evidente. 2002. HPLC analysis of FA, 9, 10-dehydrofusaric acid, their methyl esters, toxic metabolites from weed pathogenic Fusarium species. Phytochem. Analysis 13:277-282. https://doi.org/10.1002/pca.648
  4. Bacon, C.W., J.K. Poter, W.P. Norred, and J.F. Leslie. 1996. Production of fusaric acid by Fusarium species. Appl. Environ. Microbiol. 63:4039-4043.
  5. Baik, S.-Y., K.S. Jang, Y.H. Choi, J.-C. Kim, and G.J. Choi. 2011. Resistance degree of radish cultivars to Fusarium oxysporum f. sp. raphani according to several conditions. Kor. J. Hort. Sci. Technol. 29:48-52.
  6. Burmeister, H.R., M.D. Grove, R.E. Peterson, D. Weisleder, and R.D. Plattner. 1985. Isolation and characterization of two new fusaric acid analogs from Fusarium moniliforme NRRL 13,163. Appl. Environ. Microbiol. 50:311-314.
  7. Capasso, R., A. Evidente, A. Cutignano, M. Vurro, M.C. Zonno, and A. Bottalico. 1996. Fusaric and dehydrofusaric acids and their methyl esters from Fusarium nygamai. Phytochem. 41:1035-1039. https://doi.org/10.1016/0031-9422(95)00716-4
  8. Davis, D. 1969. Fusaric acid in selective pathogenicity. Phytopathology 59:1391-1395.
  9. Desjardins, A.E. and T.M. Hohn. 1997. Mycotoxins in plant pathogenesis. Mol. Plant-Microbe Interact. 10:147-152. https://doi.org/10.1094/MPMI.1997.10.2.147
  10. Gaumann, E. 1957. Fusaric acid as a wilt toxin. Phytopathology 47:342-357.
  11. Greenberg, J.T. and N. Yao. 2004. The role and regulation of programmed cell death in plant-pathogen interactions. Cell. Microbiol. 6:201-211. https://doi.org/10.1111/j.1462-5822.2004.00361.x
  12. Hershenhorn, J., S.H. Park, A. Stierle, and G.A. Strobel. 1992. Fusarium avenaceum as a novel pathogen of spotted knapweed and its phytotoxins, acetamido-butenolide and enniatin B. Plant Sci. 86:155-160. https://doi.org/10.1016/0168-9452(92)90161-E
  13. Idris, A.E., M.A. Abouzeid, A. Boari, M. Vurro, and A. Evidente. 2003. Identification of phytotoxic metabolites of a new Fusarium sp. inhibiting germination of Striga hemonthica seed. Phytophathol. Mediterr. 42:65-70.
  14. Kendric, J.B. and W.C. Snyder. 1936. A vascular Fusarium disease of radish. Phytopathology 26:98.
  15. Kern, H. 1972. Phytotoxins produced by Fusaria, p. 35-48. In: R.K.S. Wood, A. Balili and A. Graniti (eds.). Phytotoxins in plant disease. Academic Press, New York.
  16. Kim, B.R., H.W. Kang, S.H. Yu, Y. Itho, and K. Kohmoto. 1998. RAPD analysis of host-specific toxin (HST) producing Alternaria species. Korean J. Plant Pathol. 14:92-98.
  17. Kim, S.D. 1993. Studies on the mode of action of HC-toxin (I). Korean Biochem. J. 26:51-53.
  18. Kuzniak, E. 2001. Effects of fusaric acid on reactive oxygen species and antioxidants in tomato cell cultures. Phytopathology 149:575-582. https://doi.org/10.1046/j.1439-0434.2001.00682.x
  19. Lee, S.J., M.H. Kim, S.S. Oh, and H.S. Chun. 2012. Trends in researches of Fusarium mycotoxins, T-2 toxin and HT-2 toxin in domestic and foreign countries. J. Fd Hyg. Safety 27:1-17. https://doi.org/10.13103/JFHS.2012.27.1.001
  20. Luz, J.M., R.R.M. Paterson, and D. Brayford. 1990. Fusaric acid and other metabolite production in Fusarium oxysporum f. sp. vasinfectum. Lett. Appl. Microbiol. 11:141-144. https://doi.org/10.1111/j.1472-765X.1990.tb00144.x
  21. Marasas, W.F., P.E. Nelson, and T.A. Toussoun. 1984. Toxigenic Fusarium species. The Pennsylvania State University Press, Pennsylvania.
  22. Moon, Y.G., W.G. Kim, W.D. Cho, and J.M. Sung. 2001. Occurrence of Fusarium wilt on cruciferous vegetable crops and pathogenic differentiation of the causal fungus. Res. Plant Dis. 7:93-101.
  23. Nam, S.H. 1994. Inheritance and breeding of Fusarium yellow resistance in radish. PhD Diss., ChungNam Natl. Univ., Daejeon, Korea.
  24. Peterson, J.L. and G.S. Pound. 1960. Studies on resistance in radish to Fusarium oxysporum f. sp. conglutinans. Phytopathology 50:807-816.
  25. Placinta, C.M., J.P.F. D'Mello, and A.M.C. Macdonald. 1999. A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Anim. Feed Sci. Technol. 78:21-37. https://doi.org/10.1016/S0377-8401(98)00278-8
  26. Porter, J.K., C.W. Bacon, and W.P. Norred. 1990. Effects of Fusarium moniliforme and corn associated with equine leukoencephalomalacia on rat neurotransmitters and metabolites. Proc. Soc. Exp. Biol. Med. 194:265-269. https://doi.org/10.3181/00379727-194-43089
  27. Pound, G.S. 1959. Red Prince is new radish. Wis. Univ. Agric. Exp. Sta. Bull. 538:93.
  28. Pound, G.S. and D.L. Fowler. 1953. Fusarium wilt of radish in Wisconsin. Phytopathology 43:277-280.
  29. Shahin, E.A. and R. Spivey. 1986. A single dominant gene for Fusarium wilt resistance in protoplast-derived tomato plants. Theor. Appl. Genet. 73:164-169. https://doi.org/10.1007/BF00289270
  30. Song, H.H., J. Kim, and C. Lee. 2006. A review of mycotoxins from Fusarium species. Safe Food 1:19-28.
  31. Smith, T.K. and M.G. Sousadias. 1993. Fusaric acid content of swine feedstuffs. J. Agric. Food Chem. 41:2296-2298. https://doi.org/10.1021/jf00036a014
  32. Van Asch, M.A.J., F.H.F. Rijkenberg, and T.A. Coutinho. 1992. Phytotoxicity of fumonisin $B_1$, moniliformin and T-2 toxin in corn callus cultures. Phytopathology 82:1330-1332. https://doi.org/10.1094/Phyto-82-1330
  33. Van Peer, R., T. Xu, H. Rattink, and B. Schippers. 1988. Biological control of carnation wilt caused by Fusarium oxysporum f. sp. dianthi in hydroponic system. ISOSC Proc. 361-373.
  34. Vesonder, R.E. and P. Golinski. 1989. Metabolites of Fusarium, p. 1-39. In: J. Chelkowski (ed.). Fusarium-mycotoxins, taxonomy and pathogenicity. Elsevier, Amsterdam, The Netherlands.
  35. Wakulinski, W. 1989. Phytotoxicity of Fusarium metabolites in relation to pathogenicity, p. 257-268. In: J. Chelkowski (ed.). Fusarium-mycotoxins, taxonomy and pathogenicity. Elsevier, Amsterdam, The Netherlands.
  36. Wolpert, T.J., L.D. Dunkle, and L.M. Ciuffetti. 2002. Host-selective toxins and avirulence determinants: What's in a name? Annu. Rev. Phytopathol. 40:251-285. https://doi.org/10.1146/annurev.phyto.40.011402.114210
  37. Yabuta, T., K. Kambe, and T. Hayashi. 1937. Biochemistry of the bakanae fungus. J. Agric. Chem. Soc. Jpn. 10:1059-1068.
  38. Zonno, M.C., M. Vurro, A. Evidente, R. Capasso, A. Cutignano, and J. Sauerborn. 1996. Phytotoxic metabolites produced by Fusarium nygamai from Striga hermonthica, p. 223-226. In: Proc. IX. Int. Symp. on biological control of weeds. Stellenbosch, South Africa.