DOI QR코드

DOI QR Code

Volatile Compounds and Ultrastructure of Petal Epidermal Cells According to Scent Intensity in Rosa hybrida

장미꽃의 향기정도에 따른 주요성분 및 꽃잎 세포의 미세구조

  • Lee, Young-Soon (Horticulture Industrial Research Division, Gyeonggi-do Agricultural Research & Extension Services) ;
  • Lee, Yun-Hae (Mushroom Research Station, Gyeonggi-do Agricultural Research & Extension Services) ;
  • Lim, Seung-Hee (Horticulture Industrial Research Division, Gyeonggi-do Agricultural Research & Extension Services) ;
  • Park, Gun-Hwan (Horticulture Industrial Research Division, Gyeonggi-do Agricultural Research & Extension Services) ;
  • Choi, Sunk-Young (Horticulture Industrial Research Division, Gyeonggi-do Agricultural Research & Extension Services) ;
  • Hong, Hae-Jung (Mushroom Research Station, Gyeonggi-do Agricultural Research & Extension Services) ;
  • Ko, Jeong-Ae (College of Agriculture & Life Science, Chonbuk National University)
  • 이영순 (경기도농업기술원 원예산업연구과) ;
  • 이윤혜 (경기도농업기술원 버섯연구소) ;
  • 임성희 (경기도농업기술원 원예산업연구과) ;
  • 박건환 (경기도농업기술원 원예산업연구과) ;
  • 최숙영 (경기도농업기술원 원예산업연구과) ;
  • 홍혜정 (경기도농업기술원 버섯연구소) ;
  • 고정애 (전북대학교 농업생명과학대학)
  • Received : 2013.03.19
  • Accepted : 2013.05.29
  • Published : 2013.09.30

Abstract

Principle component and emission localization of volatile compounds were investigated according to scent intensity of rose flower. Scent intensity in cultivars and bred-line of Rosa hybrida was divided into three levels; light ('Feel Lip', 'Venus Berry'), medium ('GR07-135'), strong ('Honey Blue'). The major volatile compounds were different depending on the cultivars and selected line; 3,5-dimethoxytoluene (DMT), benzene, 1,3,5-trimethoxy ('Feel Lip'), megastigma-4,6(Z),8(E)-triene ('Venus Berry'), DMT, benzene,1-ethenyl-4-methoxyand, phenylethylalcohol ('GR07-135') and germacrene-D, DMT ('Honey Blue'). The adaxial epidermal cells were conical papillate shape, whereas the abaxial epidermal cells were flat shape. The adaxial epidermal cells of 3 cultivars and 1 selected line were surrounded by thick cell wall and covered by waxy cuticle of 2 cultivars and 1 selected line (except 'Honey Blue'). The adaxial epidermal cells contained starches in 'Feel Lip', osmiophlic droplets in 'Venus Berry', starchs, plastids, vacuoles in 'GR07-135' and plastoglobules, plastids, vacuoles in 'Honey Blue'. Based on these results, it appears that plastids and vacuoles in adaxial epidermal cells with conical papillate shape are associated production and emission of volatile compounds in scent R. hybrida.

장미 꽃의 향기정도에 따른 주요성분과 향기발산 위치를 구명하기 위하여 본 연구를 수행하였다. 향기정도는 약한 품종('필립'과 '비너스베리'), 중간 선발계통('GR07-135') 및 강한 품종('허니블루') 3수준으로 구분되었다. 품종과 선발계통 별 주요 향기성분은 '필립'은 3,5-dimethoxytoluene(DMT)와 benzene,1,3,5-trimethoxy 성분이었으며, '비너스베리'는 megastigma-4,6(Z),8(E)-triene 성분이었고, 'GR07-135'는 DMT, benzene,1-ethenyl-4-methoxy 및 phenylethylalcohol 성분이었으며, '허니블루'는 germacrene-D와 DMT 성분이었다. 향축면 표피세포는 원추형의 유두상 돌기 모양이 있었고 배축면 표피세포는 편평한 모양이었다. 3품종과 1선발계통 모두 두꺼운 세포벽이 있었고, '허니블루'를 제외한 2품종과 1선발계통은 왁스로 덮인 큐티클층이 있었다. 향축면 표피세포에 '필립'은 전분립이, '비너스베리'는 오스미움 소체가, 'GR07-135'은 전분립, 색소체 및 액포가, '허니블루'는 색소체낭, 색소체 및 액포가 있었다. 결과적으로 방향성 장미 꽃 향기의 주요성분은 품종에 따라 달랐으며, 생성과 발산은 유두돌기가 있는 향축면 표피 세포내의 색소체와 액포가 관련되어 있었다.

Keywords

References

  1. Baudino, S., J.C. Caissard, V. Bergougnoux, F. Jullien, J.L. Magnard, G. Scalliet, J.M. Cock, and P. Hugueney. 2007. Production and emission of volatile compounds by petal cells. Plant Signal Behavior 2:525-526. https://doi.org/10.4161/psb.2.6.4659
  2. Bent, E. 2007. Fragrance is unpredictable, but breeder undeterred. Floraculture Intl. September:32-33.
  3. Bergougnoux, V., J.C. Caissard, F. Jullien, J.L. Magnard, G. Scalliet, J.M. Cock, P. Hugueney, and S. Baudino. 2007. Both the adaxial and abaxial epidermal layers of the rose petal emit volatile scent compounds. Planta 226:858-866.
  4. Caissard, J.C., C. Joly, V. Bergougnoux, P. Hugueney, M. Mauriat, and S. Baudino. 2004. Secretion mechanisms of volatile organic compounds in specialized cells of aromatic plants. Cell Biol. 2:1-15.
  5. Flament, I., C. Debonneville, and A. Furrer. 1993. Volatile constituents of roses, p. 269-281. In: R. Teranishi, R.G. Buttery, and H. Sugisawa (eds.). Bioactive volatile compounds from plants. ACS Symp. Ser. 525. American Chemical Society, Washington, DC.
  6. Giulia, B., N. Monica, A.L. Alexa, and R. Anna. 2006. Development of a headspace-solid phase micro extraction method to monitor change in volatile profile of rose (Rosa hybrida cv. David Austin) petals during processing. J. Chromatogr. A 1159:190-197.
  7. Guterman, I., M. Shalit, N. Menda, D. Piestun, M. Dafny-Yelin, G. Shalev, E. Bar, O. Davydov, M. Ovadis, M. Emanuel, J. Wang, Z. Adam, E. Pichersky, E. Lewinsohn, D. Zamir, A. Vainstein, and D. Weiss. 2002. Rose scent: Genomics approach to discovering novel floral fragrance-related genes. Plant Cell 14:2325-2338. https://doi.org/10.1105/tpc.005207
  8. Joichi, A., K. Yomogida, K.I. Awano, and Y. Ueda. 2005. Volatile components of tea-scented modern roses and ancient Chines roses. Flavour Fragr. J. 20:152-157. https://doi.org/10.1002/ffj.1388
  9. Kim, H.J., K. Kim, N.S. Kim, and D.S. Lee. 2000. Determination of floral fragrance of Rosa hybrida using solid-phase trapping-solvent extraction and gas chromatography mass spectrometry. J. Chromatogr. A 902:389-404. https://doi.org/10.1016/S0021-9673(00)00863-3
  10. Kolosova, N., D. Sherman, D. Karlson, and N. Dudareva. 2001. Cellular and subcellular location of S-adenosy-L-methionine: benzoic acid carboxyl methyltransferase, the enzyme responsible for biosynthesis of the volatile ester methylbenzoate in snapdragon flowers. Plant Physiol. 126:956-964. https://doi.org/10.1104/pp.126.3.956
  11. Kwon, M.K., J.Y. Ko, and Y.Y. Han. 2004. Analysis of volatile compounds of cultivars, culture method and flowering stage of Rosa hybida by using electronic nose. Kor. J. Hort. Sci. Technol. 22(Suppl. I):132. (Abstr.)
  12. Lee, Y.S., S.J. Kim, and K.J. Kim. 2008. Analysis of Volatile compounds according to the flowering stages of rose using gas-chromatography mass. Kor. J. Hort. Sci. Technol. 26:501-507.
  13. Lavid, N., J. Wang, M. Shalit, I. Guterman, E. Bar, T. Beuerle, N. Menda, S. Shafir, D. Zamir, Z. Adam, A. Vainstein, D. Weiss, E. Pichersky, and E. Lewinsohn. 2002. O-methyltransferases involved in the biosynthesis of volatile phenolic derivatives in rose petals. Plant Physiol. 129:1899-1907. https://doi.org/10.1104/pp.005330
  14. Magali, C.M., J. Frederic, H. Philippe, and B. Sylvie. 2007. Fragrance heritability in Hybrid Tea roses. Scientia Hort. 113:177-181. https://doi.org/10.1016/j.scienta.2007.03.002
  15. Picone, J.M., R.A. Clery, N. Watanabe, H.S. Mac Tavish, and C.G.N. Turnbull. 2004. Rhythmic emission of floral volatiles from Rosa damascene semperflorens cv. Quatre Saision. Planta 219:468-478.
  16. Scalliet, G., C. Lionnet, M.L. Bechec, L. Dutronc , J.L. Magnaed, S. Baudino, V. Bergougnoux , F. Jullien, P. Chambrier, P. Vergne, C. Dumas, J.M Cock, and P. Hugueney. 2006. Role of petal specific orcinol O-methyltransferases in the evolution of rose scent. Plant Physiol. 140:18-29.
  17. Scalliet, G., N. Journot, F. Jullien, S. Baudino, J.L. Magnaed, S. Channeliere, P. Vergne, C. Dumas, M. Bendahmane, J.M. Cock, and P. Hugueney. 2002. Biosynthesis of the major scent component 3,5-dimethoxytoluene and 1,3,5-trimethoxybenzene by novel rose O-methyltransferases. FEBS Lett. 523:113-118. https://doi.org/10.1016/S0014-5793(02)02956-3
  18. Stubbs, J.M. and M.J.O. Francis. 1971. Electron microscopical studies of rose petal cells during flower maturation. Planta Medica 20:211-218. https://doi.org/10.1055/s-0028-1099694
  19. Weston, E.L. and K.A. Pyke. 1999. Developmental ultrastructure of cells and plastids in petals Walflower. Ann. Bot. 84:763-769. https://doi.org/10.1006/anbo.1999.0981
  20. Xiang, L., J.A. Milc, N. Pecchioni, and L.Q. Chen. 2007. Genetic aspects of floral fragrance in plants. Biochem. (Moscow) 72:351-358. https://doi.org/10.1134/S0006297907040013
  21. Zuker, A., T. Tzfira, and A. Vainstein. 1998. Genetic engineering for cut-flower improvement. Biotechnol. Adv. 16:33-79. https://doi.org/10.1016/S0734-9750(97)00063-3

Cited by

  1. Mutation of the cyclic di-GMP phosphodiesterase gene in Burkholderia lata SK875 attenuates virulence and enhances biofilm formation vol.55, pp.10, 2017, https://doi.org/10.1007/s12275-017-7374-7