Abstract
Various networks can be observed in the world. Knowledge networks which are closely related with technology and research are especially important because these networks help us understand how knowledge is produced. Therefore, many studies regarding knowledge networks have been conducted. The assortativity coefficient represents the tendency of connections between nodes having a similar property as figures. The relevant characteristics of the assortativity coefficient help us understand how corresponding technologies have evolved in the keyword-based patent network which is considered to be a knowledge network. The relationships of keywords in a knowledge network where a node is depicted as a keyword show the structure of the technology development process. In this paper, we suggest two hypotheses basedon the previous research indicating that there exist core nodes in the keyword network and we conduct assortativity analysis to verify the hypotheses. First, the patents network based on the keyword represents disassortativity over time. Through our assortativity analysis, it is confirmed that the knowledge network shows disassortativity as the network evolves. Second, as the keyword-based patents network becomes disassortavie, clustering coefficients become lower. As the result of this hypothesis, weconfirm the clustering coefficient also becomes lower as the assortative coefficient of the network gets lower. Another interesting result concerning the second hypothesis is that, when the knowledge network is disassorativie, the tendency of decreasing of the clustering coefficient is much higher than when the network is assortative.
우리가 살고 있는 세계에는 다양한 네트워크들이 발견된다. 특히, 기술 및 학문과 밀접하게 관련 있는 지식 네트워크는 지식이 생산되는 방식을 이해하는데 도움을 주기 때문에 큰 의미를 갖는다. 이러한 중요성을 바탕으로 지금까지 지식 네트워크를 대상으로 한 많은 네트워크 분석들이 이루어져 오고 있다. 그 중에서 동종성 계수는 네트워크 내의 노드들이 비슷한 성향을 가진 노드들과 연결을 맺으려는 경향 수치로 나타낸다. 동종성 계수가 가지는 이러한 특성은 지식 네트워크로 간주 될 수 있는 키워드기반 특허 네트워크에서 기술이 어떻게 진화하는지 확인 하는데 도움을 줄 수 있다. 왜냐하면 지식 내트워크내 노드로 표현되는 키워드들 간의 관계들이 기술이 만들어지는 구조를 나타내기 때문이다. 본 연구에서는 키워드 네트워크에는 핵심 노드가 존재한다는 기존 연구 결과를 기반으로 두 가지 가설을 세우고 이에 대한 검증으로 동종성 분석을 수행 하였다. 첫 번째 가설은 키워드 기반 특허 네트워크는 시간 흐름에 따라 비동종성을 띌 것으로 예측 하며, 동종성 분석을 통해 특허 네트워크가 진화함에 따라 비동종성을 보이는 것을 확인 하였다. 다음으로, 키워드 기반 특허 네트워크가 비동종성을 보일수록 클러스터링 계수 또한 낮아 질 것으로 예측하는 두 번째 가설에 대한 동종성 분석 결과, 네트워크의 동종성 계수가 낮아질수록 클러스터링 계수 또한 낮아진다는 사실을 확인 할 수 있었다. 또한, 두 번째 가설의 검증과정에서 확인 한 흥미로웠던 결과로써, 동종성 계수가 감소함에 따라 클러스터링 계수가 낮아지는 정도는 네트워크가 동종성을 보일 때 보다 비동종성을 보일 때가 훨씬 높았다.