DOI QR코드

DOI QR Code

이심률 및 각막형상이 자세변화에 의한 토릭소프트렌즈의 회전에 미치는 영향

The Effects of Corneal Eccentricity and Shape on Toric Soft Lens Rotation by Change of Postures

  • 김소라 (서울과학기술대학교 안경광학과) ;
  • 한신웅 (서울과학기술대학교 안경광학과) ;
  • 송지수 (서울과학기술대학교 안경광학과) ;
  • 박미정 (서울과학기술대학교 안경광학과)
  • Kim, So Ra (Dept. of Optometry, Seoul National University of Science and Technology) ;
  • Hahn, Shin Woong (Dept. of Optometry, Seoul National University of Science and Technology) ;
  • Song, Ji Soo (Dept. of Optometry, Seoul National University of Science and Technology) ;
  • Park, Mijung (Dept. of Optometry, Seoul National University of Science and Technology)
  • 투고 : 2013.11.03
  • 심사 : 2013.12.14
  • 발행 : 2013.12.31

초록

목적: 렌즈 착용자의 자세가 변했을 때 각막이심률 및 각막형상이 토릭소프트렌즈의 회전 양상에 미치는 영향을 알아보고자 하였다. 방법: 각막난시 -1.00 D의 직난시를 가진 20대 남녀 41안의 이심률을 측정하고 전체난시량에 따라 토릭소프트렌즈를 피팅하였다. 정자세와 누운 자세일 때의 토릭소프트렌즈의 회전을 슬릿램프에 장착된 카메라를 이용하여 촬영하고 분석하였다. 결과: Accelerated stabilization 디자인의 토릭소프트렌즈는 이심률에 관계없이 대부분 누운 방향인 귀쪽으로 회전하였으며 이심률이 큰 경우와 비대칭나비형 각막에서는 코쪽으로 회전하는 경우도 있었다. 렌즈착용 직후 정자세와 누운 자세에서 회전양과 이심률은 상관관계가 없었으나 일정 시간동안 누운 자세로 있는 경우는 이심률이 큰 각막에서 회전양이 더 컸다. 회전속도는 누운 자세로 변화된 직후부터 속도가 감소하였으며, 이심률에 따른 큰 차이는 없었다. 누운 자세로 변화된 직후 대칭나비형과 비대칭나비형의 경우는 타원형 각막에 비해 회전양이 더 크게 증가하였으며 일정 시간이 지난 후에도 마찬가지였다. 누운 자세에서의 렌즈회전속도는 다른 각막형태에 비해 비대칭나비에서 가장 느렸다. 결론: 본 연구를 통하여 자세변화시 토릭소프트렌즈의 회전 양상은 각막이심률 및 각막형상에 의해 영향을 받는다는 것을 알 수 있었다. 따라서 토릭소프트렌즈 피팅 및 디자인 개발 시에 이에 대한 고려가 이루어져야 할 것으로 보인다.

Purpose: The present study aimed to investigate the effects of corneal eccentricity and shape on the rotational pattern of toric soft lens by the postural change of lens wearers. Methods: The corneal eccentricity of 41 eyes (aged 20s) having -1.0 D with-the-rule corneal astigmatism (WRCA) was measured, and then toric soft lenses were fitted with the amount of total astigmatism. In lying and straight postures, the rotation of toric soft lenses was recorded by a camera attached to slitlamp and analyzed. Results: Most toric soft lens designed with accelerated stabilization rotated to the temporal direction, which was the lying position direction, regardless of corneal eccentricity, and some lenses rotated to the nasal direction for high corneal eccentricity and corneal type of asymmetric bowtie. There was no correlation between the amount of rotation and corneal eccentricity right after of contact lens wearing in straight and lying posture, however, the amount of rotation was the greater for the cornea with the higher eccentricity after the subjects laying down for some period. The speed of lens rotation started to decrease after the subjects laying down, but the speed was not different according to corneal eccentricity difference. The amount of lens rotation for symmetric and asymmetric bowtie-typed corneas increased more than it for oval-typed cornea, and it was same even with time elapsing. The speed of lens rotation in lying posture was the slowest in asymmetric bowtie-typed cornea compared with other corneal types. Conclusions: From the present study, it was revealed that the rotational pattern of toric soft lens was affected by corneal eccentricity and corneal shape when the wearer's posture changed. Thus, it should be considered for the development of the fitting guideline and the design of toric soft lens.

키워드

참고문헌

  1. Efron N, Morgan PB, Helland M, Itoi M, Jones D, Nichols JJ et al. Soft toric contact lens prescribing in different countries. Cont Lens Anterior Eye. 2011;34(1):36-38. https://doi.org/10.1016/j.clae.2010.08.009
  2. Chu BS, Mah KC, Hwang JH. Contact lens market trend of Korean optometric clinics in 2010. Korean J Vis Sci. 2011;13(3):225-234
  3. Holden BA. The principles and practice of correcting astigmatism with soft contact lenses. Aust J Optom 1975;58(8): 279-299.
  4. Bogan SJ, Waring GO, Ibrahim O, Drews C. Classification of normal corneal topography based on computerassisted videokeratography. Arch Ophthalmol. 1990;109(7): 945-949.
  5. Mcllraith R, Young G, Hunt C. Toric lens orientation and visual acuity in non-standard condition. Cont Lens Anterior Eye. 2010;33(1):23-26. https://doi.org/10.1016/j.clae.2009.08.003
  6. Kim SY, Lee DY, Lee SH, Kim KK, Song S, Cho HG. Analysis of axial mis-alignment after wearing of toric soft contact lenses. J Korean Oph Opt Soc. 2010;15(3):213-217.
  7. Harris MG, Decker MR, Funnell JW. Rotation of spherical nonprism and prismballast hydro-gel contact lenses on toric corneas. Am J Optom Physiol Opt. 1977;54(3):149-152. https://doi.org/10.1097/00006324-197703000-00005
  8. Yu DS, Moon BY, Son JS. Usefulness of rotation for toric soft lenses using objective refraction. J Korean Oph Opt Soc. 2011;16(3):265-272.
  9. Young G, Hickson-Curran S. Toric soft lens fitting reasseaaed. Optometry today. 2006;30-36.
  10. Young G, McIlraith R, Hunt C. Clinical evaluation of factors affecting soft toric lens orientation. Optom Vis Sci. 2009;86(11):1259-1266. https://doi.org/10.1097/OPX.0b013e3181bc63b4
  11. Park EH, Kim SR, Park MJ. A relationship between corneal eccentricity and stable centration of RGP lens on cornea. J Korean Oph Opt Soc. 2012;17(4):373-380.
  12. Young, G. Ocular sagittal height and soft contact lens fitting. Cont Lens Anterior Eye. 1992;15(1): 45-49.
  13. Tan J, Papas E, Carnt N, Jalbert I, Skotnitsky C, Shiobara M et al. Performance standard for toric soft contact lens. Optom Vis. Sci. 2007;84(5):422-428. https://doi.org/10.1097/OPX.0b013e318059063b
  14. Kim JH, Kang SA. A study on the relationship between the off-axis cylinder and corre-cted vision of astigmatism. J Korea Oph Opt Soc. 2007;12(3):83-87.
  15. Reddy T, Szczotka LB, Roverts C. Peripheral corneal contour measured by topography influences soft toric contact lens fitting success. CLAO J. 2000;26(4):180-185.
  16. Szczotka LB, Roberts C, Herderick EE, Mahmoud A. Quantitative descriptors of corneal topography that influence soft toric contact lens fitting. Cornea. 2002;21(3): 249-255. https://doi.org/10.1097/00003226-200204000-00003
  17. Edrington TB. A literature review: The impact of rotational stabilization methods on toric soft contact lens performance. Cont Lens Anterior Eye. 2011;34(3):104-110. https://doi.org/10.1016/j.clae.2011.02.001

피인용 문헌

  1. Difference in Rotation Pattern of Toric Soft Contact Lenses with Different Axis Stabilization Design vol.20, pp.2, 2015, https://doi.org/10.14479/jkoos.2015.20.2.133
  2. Change in Axial Rotation of Toric Soft Contact Lens according to Tear Volume vol.20, pp.4, 2015, https://doi.org/10.14479/jkoos.2015.20.4.445
  3. The Effect of Corneal Astigmatism on the Change of Axial Rotation while Wearing Toric Soft Contact Lenses vol.24, pp.2, 2019, https://doi.org/10.14479/jkoos.2019.24.2.117
  4. Correlation between Corneal Aberrations and Recovery after Axis Rotation of Toric Soft Contact Lenses vol.26, pp.3, 2013, https://doi.org/10.14479/jkoos.2021.26.3.171