References
- Asakura A, Komaki M, Rudnicki M (2001): Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68:245-253. https://doi.org/10.1046/j.1432-0436.2001.680412.x
- Belu M, Mizutani CM (2011): Variation in mesoderm specification across Drosophilids is compensated by different rates of myoblast fusion during body wall musculature development. LoS One 6:e28970. https://doi.org/10.1371/journal.pone.0028970
- Chen TL, Shen WJ, Qiu XW, Li T, Hoffman AR, Kraemer FB (2007): Generation of novel adipocyte monolayer cultures from embryonic stem cells. Stem Cells Dev 16:371-380. https://doi.org/10.1089/scd.2006.0037
- Davis TA, Nguyen HV, Suryawan A, Bush JA, Jefferson LS, Kimball SR (2000): Developmental changes in the feeding-induced stimulation of translation initiation in muscle of neonatal pigs. Am J Physiol Endocrinol Metab 279:E1226-34. https://doi.org/10.1152/ajpendo.2000.279.6.E1226
-
Ding K, Yang Z, Zhang YL, Xu JZ (2013): Injectable thermosensitive chitosan/
$\beta$ -glycerophosphate/collagen hydrogel maintains the plasticity of skeletal muscle satellite cells and supports their in vivo viability. Cell Biol Int 37:977-987. https://doi.org/10.1002/cbin.10123 - Gregoire FM, Smas CM, Sul HS (1998): Understanding adipocyte differentiation. Physiol Rev 78:783-809. https://doi.org/10.1152/physrev.1998.78.3.783
- Lee HJ, Jang M, Kim H, Kwak W, Park W, Hwang JY, Lee CK, Jang GW, Park MN, Kim HC, Jeong JY, Seo KS, Kim H, Cho S, Lee BY (2013): Comparative transcriptome analysis of adipose tissues reveals that ECM-receptor interaction is involved in the Depotspecific adipogenesis in cattle. PLoS One 8(6):e662-67.
- Phillips BW, Vernochet C, Dani C (2003): Differentiation of embryonic stem cells for pharmacological studies on adipose cells. Pharmacol Res 47:263-268. https://doi.org/10.1016/S1043-6618(03)00035-5
- Samulin J, Lien S, Grindflek E, Berget I, Ruyter B (2008): Depot specific differences during adipogenesis of porcine stromal-vascular cells. Cell Biol Int 32:525-531. https://doi.org/10.1016/j.cellbi.2008.01.001
- Shi F, Miao J, Zhang L, Tao H, Lü J, Ruan Z, Zong H (2010): Detection of bovine, goat, pig and chicken derived ingredients in animal products with universal PCR-microarray method. Sheng Wu Gong Cheng Xue Bao 26:823-829.
- Suryawan A, Nguyen HV, Bush JA, Davis TA (2001): Developmental changes in the feeding-induced activation of the insulin-signaling pathway in neonatal pigs. Am J Physiol Endocrinol Metab 281(5):E908-915. https://doi.org/10.1152/ajpendo.2001.281.5.E908
- Tchkonia T, Lenburg M, Thomou T, Giorgadze N, Frampton G, Pirtskhalava T, Cartwright A, Cartwri ght M, Flanagan J, Karagiannides I, Gerry N, Forse RA, Tchoukalova Y, Jensen MD, Pothoulakis C, Kirkland JL (2007): Identification of depot-specific human fat cell progenitors through distinct expression profiles and developmental gene patterns. Am J Physiol Endocrinol Metab 292:E298-307. https://doi.org/10.1152/ajpendo.00202.2006
- Zhou G, Wang S, Wang Z, Zhu X, Shu G, Liao W, Yu K, Gao P, Xi Q, Wang X, Zhang Y, Yuan L, Jiang Q (2010): Global comparison of gene expression profiles between intramuscular and subcutaneous adipocytes of neonatal landrace pig using microarray. Meat Sci 86(2):440-450. https://doi.org/10.1016/j.meatsci.2010.05.031