DOI QR코드

DOI QR Code

Gene Co-Expression Network Analysis of Reproductive Traits in Bovine Genome

  • Lim, Dajeong (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, RDA) ;
  • Cho, Yong-Min (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, RDA) ;
  • Lee, Seung-Hwan (Hanwoo Experiment Station, National Institute of Animal Science, RDA) ;
  • Chai, Han-Ha (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, RDA) ;
  • Kim, Tae-Hun (Division of Animal Genomics and Bioinformatics, National Institute of Animal Science, RDA)
  • Received : 2013.11.07
  • Accepted : 2013.11.19
  • Published : 2013.12.31

Abstract

Many countries have implemented genetic evaluation for fertility traits in recent years. In particular, reproductive trait is a complex trait and need to require a system-level approach for identifying candidate genes related to the trait. To find the candidate gene associated with reproductive trait, we applied a weighted gene co-expression network analysis from expression value of bovine genes. We identified three co-expressed modules associated with reproductive trait from bovine microarray data. Hub genes (ZP4, FHL2 and EGR4) were determined in each module; they were topologically centered with statistically significant value in the gene co-expression network. We were able to find the highly co-expressed gene pairs with a correlation coefficient. Finally, the crucial functions of co-expressed modules were reported from functional enrichment analysis. We suggest that the network-based approach in livestock may an important method for analyzing the complex effects of candidate genes associated with economic traits like reproduction.

Keywords

References

  1. Barabasi AL, Albert R (1999): Emergence of scaling in random networks. Science 286:509-512. https://doi.org/10.1126/science.286.5439.509
  2. Barabasi AL, Oltvai ZN (2004): Network biology: understanding the cell's functional organization. Nat Rev Genet 5:101-113. https://doi.org/10.1038/nrg1272
  3. Brandes U (2001): A faster algorithm for betweenness centrality. J Math Soc 25:163-177. https://doi.org/10.1080/0022250X.2001.9990249
  4. Donaldson L, Vuocolo T, Gray C, Strandberg Y, Reverter A, McWilliam S, Wang Y, Byrne K, Tellam R (2005): Construction and validation of a Bovine innate immune microarray. BMC Genomics 6: 135. https://doi.org/10.1186/1471-2164-6-135
  5. Gautier L, Cope L, Bolstad B, Irizarry R (2004): Affyanalysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20:307. https://doi.org/10.1093/bioinformatics/btg405
  6. Ghazalpour A, Doss S, Zhang B, Wang S, Plaisier C, Castellanos R, Brozell A, Schadt E, Drake T, Lusis A (2006): Integrating genetic and network analysis to characterize genes related to mouse weight. PLoS Genet 2:e130. https://doi.org/10.1371/journal.pgen.0020130
  7. Gibson G, Weir B (2005): The quantitative genetics of transcription. Trends Genet 21:616-623. https://doi.org/10.1016/j.tig.2005.08.010
  8. Haley C, de Koning DJ (2006): Genetical genomics in livestock: potentials and pitfalls. Anim Genet 37 Suppl 1:10-12.
  9. Hocquette J, Brandstetter A (2002): Common practice in molecular biology may introduce statistical bias and misleading biological interpretation. J Nutrit Biochem 13:370-377. https://doi.org/10.1016/S0955-2863(01)00216-9
  10. Hoelker M, Rings F, Lund Q, Ghanem N, Phatsara C, Griese J, Schellander K, Tesfaye D (2009): Effect of the microenvironment and embryo density on developmental characteristics and gene expression profile of bovine preimplantative embryos cultured in vitro. Reproduction 137:415-425. https://doi.org/10.1530/REP-08-0370
  11. Hwang S, Son SW, Kim SC, Kim YJ, Jeong H, Lee D (2008): A protein interaction network associated with asthma. J Theor Biol 252:722-731. https://doi.org/10.1016/j.jtbi.2008.02.011
  12. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP (2003): Summaries of Affymetrix Gene- Chip probe level data. Nucleic Acids Res. 31, e15. https://doi.org/10.1093/nar/gng015
  13. Jiang Z, Michal JJ, Chen J, Daniels TF, Kunej T, Garcia MD, Gaskins CT, Busboom JR, Alexander LJ, Wright RW, Jr, Macneil MD (2009): Discovery of novel genetic networks associated with 19 economically important traits in beef cattle. Int J Biol Sci 5: 528-542.
  14. Keller M, Choi Y, Wang P, Belt Davis D, Rabaglia M, Oler A, Stapleton D, Argmann C, Schueler K, Edwards S (2008): A gene expression network model of type 2 diabetes links cell cycle regulation in islets with diabetes susceptibility. Genome Res 18:706. https://doi.org/10.1101/gr.074914.107
  15. Lindemann MD, Kornegay ET (1989): Folic acid supplementation to diets of gestating-lactating swine over multiple parities. J Anim Sci 67:459-464. https://doi.org/10.2527/jas1989.672459x
  16. Matulis CK, Mayo KE (2012): The LIM domain protein FHL2 interacts with the NR5A family of nuclear receptors and CREB to activate the inhibin-$\alpha$ subunit gene in ovarian granulosa cells. Molecular Endocrinology 26:1278-1290. https://doi.org/10.1210/me.2011-1347
  17. Merico D, Isserlin R, Stueker O, Emili A, Bader G. D (2010): Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One 5:e13984. https://doi.org/10.1371/journal.pone.0013984
  18. Nikitin A, Egorov S, Daraselia N, Mazo I (2003. Pathway studio-the analysis and navigation of molecular networks. Bioinformatics 19:2155. https://doi.org/10.1093/bioinformatics/btg290
  19. Nobis W, Ren X, Suchyta SP, Suchyta TR, Zanella AJ, Coussens PM (2003): Development of a porcine brain cDNA library, EST database, and microarray resource. Physiol Genomics 16:153-159. https://doi.org/10.1152/physiolgenomics.00099.2003
  20. Peter L, Steve H (2008): WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:599.
  21. Pokkyla RM, Lakkakorpi JT, Nuojua-Huttunen SH, Tapanainen JS (2011): Sequence variations in human< i> ZP genes as potential modifiers of zona pellucida architecture. Fertility and Sterility 95:2669-2672. https://doi.org/10.1016/j.fertnstert.2011.01.168
  22. Presson A, Sobel E, Papp J, Suarez C, Whistler T, Rajeevan M, Vernon S, Horvath S (2008): Integrated weighted gene co-expression network analysis with an application to chronic fatigue syndrome. BMC Systems Biol 2:95. https://doi.org/10.1186/1752-0509-2-95
  23. Ravasz E, Somera A, Mongru D, Oltvai Z, Barabasi A (2002): Hierarchical organization of modularity in metabolic networks. Science 297:1551. https://doi.org/10.1126/science.1073374
  24. Reverter A, Hudson N, Wang Y, Tan S, Barris W, Byrne K, McWilliam S, Bottema C, Kister A, Greenwood P (2006): A gene coexpression network for bovine skeletal muscle inferred from microarray data. Physiol Genomics 28:76. https://doi.org/10.1152/physiolgenomics.00105.2006
  25. Schadt EE, Monks SA, Drake TA, Lusis AJ, Che N, Colinayo V, Ruff TG, Milligan SB, Lamb JR, Cavet G, Linsley PS, Mao M, Stoughton RB, Friend SH (2003): Genetics of gene expression surveyed in maize, mouse and man. Nature 422:297-302. https://doi.org/10.1038/nature01434
  26. Smith GW, Rosa GJ (2007): Interpretation of microarray data: trudging out of the abyss towards elucidation of biological significance. J Anim Sci 85: E- 20-23.
  27. Stelzl U, Worm U, Lalowski M, Haenig C, Brem beck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksoz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (2005): A human protein- protein interaction network: a resource for annotating the proteome. Cell 122:957-968. https://doi.org/10.1016/j.cell.2005.08.029
  28. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005): Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545-15550. https://doi.org/10.1073/pnas.0506580102
  29. Suzuki-Anekoji M, Suzuki A, Wu SW, Angata K, Murai KK, Sugihara K, Akama TO, Khoo KH, Nakayama J, Fukuda MN (2013): In vivo regulation of steroid hormones by the Chst10 sulfotransferase in mouse. Journal of Biological Chemistry 288:5007-5016. https://doi.org/10.1074/jbc.M112.433474
  30. Tian X, Pascal G, Fouchécourt S, Pontarotti P, Monget P (2009): Gene birth, death, and divergence: the different scenarios of reproduction-related gene evolution. Biology of Reproduction 80:616-621. https://doi.org/10.1095/biolreprod.108.073684
  31. Wang J, Zhao Y, Gu K, Yu P, Zhang B, Wang W, Yang J, Xu Y (2013): The novel porcine gene early growth response 4 (Egr4) is differentially expressed in the ovaries of Erhualian and Pietrain pigs. Reproduction, Fertility and Development.
  32. Wassarman PM, Litscher ES (2008): Mammalian fertilization: the egg's multifunctional zona pellucida. Int J Dev Biol 52:665-676 . https://doi.org/10.1387/ijdb.072524pw
  33. Ye Y, Godzik, A (2004): Comparative analysis of protein domain organization. Genome Res. 14:343. https://doi.org/10.1101/gr.1610504