DOI QR코드

DOI QR Code

4-Hydroxybenzyl alcohol 유도체들의 Tyrosinase 활성 저해에 대한 3D-QSAR 분석

3D-QSAR Analyses on the Inhibition Activity of 4-Hydroxybenzyl alcohol Analogues Against Tyrosinase

  • 김상진 (대전보건대학교 화장품과학과, 케모리랩) ;
  • 성낙도 (충남대학교 평화안보대학원 과학수사학과)
  • Kim, Sang Jin (Department of Cosmetic Science, Daejeon Health Science College, Chemolee Lab) ;
  • Sung, Nack Do (Department of Scientific Criminal Investigation, Chungnam National University)
  • 투고 : 2013.07.15
  • 심사 : 2013.08.30
  • 발행 : 2013.12.31

초록

본 연구에서는 기질 화합물로써 일련의 4-hydroxybenzyl alchol (4-HBA) 유도체들의 치환기($R_1$$R_2$) 변화에 따른 tyrosinase 활성저해에 관한 3차원적인 구조-활성 상관관계(3D-QSARs) 모델을 유도하고 정량적으로 검토하였다. 그 결과, 입체장(S), 정전기장(E), 소수성장(Hy), 수소결합 받게장(HA) 및 수소결합 주게장(HD)의 조합조건에서 통계적으로 양호한 CoMSIA FF 모델(상관성; $r^2$ = 0.858 및 예측성; $q^2$ = 0.951)을 유도하였다. 등고도 분석결과에 의하면 기질분자의 $R_2$-치환기는 입체적으로 작고 음전하를 띄며, 소수성이면서 수소결합 주게장을 선호하지 않는 치환기가 올수록 tyrosinase 활성저해 작용이 용이하다. 그리고 $R_1$-치환기는 수소결합 주게장을 선호하는 치환기 이어서 $R_1$-치환체가 용이하게 탈 양성자화가 일어나야 tyrosinase 활성저해 작용을 용이하게 할 것이라고 예상되며, 이를 위해서는 $R_1$-치환기가 비 치환체(H)이어야 될 것으로 예상되었다.

Three-dimensional quantitative structure-activity relationships (3D-QSARs) models between the substituents with changing groups ($R_1$ & $R_2$) of 4-hydroxybenzyl alcohol (4-HBA) derivatives as substrate molecule and their inhibitory activities against tyrosinase were derived and discussed quantitatively. The optimized CoMSIA FF model showed the best predictability and fitness ($r^2$ = 0.858 & $q^2$ = 0.951). The contour maps of the optimized CoMSIA FF model showed that, the inhibitory activities of the analogues against tyrosinase were expected to increase when hydrophobic (Hy) favor, negative charge (E) favor, steric (S) disfavor and hydrogen bond donor (HD) disfavor groups were substituted at the $R_2$ position. When the hydrogen bond donor (HD) favor groups were substituted at the $R_1$ position, it is predicted that the substituents will be able to increase the inhibitory activity.

키워드

참고문헌

  1. T. R. Wright, The genetics of biogenic amine metabolism, sclerotization, and melanization in Drosophila melanogaster, Adv. Genet., 24, 127 (1987). https://doi.org/10.1016/S0065-2660(08)60008-5
  2. P. J. Wittkopp, J. R. True, and S. B. Carroll, Reciprocal functions of the Drosophila yellow and ebony proteins in the development and evolution of pigment patterns, Development, 129, 1849 (2002).
  3. P. J. Wittkopp, K. Vaccaro, and S. B. Carroll, Evolution of yellow gene regulation and pigmentation in Drosophila, Curr. Biol., 12(18), 1547 (2002). https://doi.org/10.1016/S0960-9822(02)01113-2
  4. Melanins and melanosomes: Biosynthesis, structure, physiological and pathological functions, eds. J. Borovansky and P. A. Riley, 87, John Wiley & Sons, Hoboken NJ (2011).
  5. R. Bazl, M. R. Ganjali, H. Derakhshankhah, A. Saboury, M. Amanlou, and P. Norouzi, Prediction of tyrosinase inhibition for drug design using the genetic algorithm-multiple linear regressions, Med. Chem. Res., 11(22), 5453 (2013).
  6. S. E. Cross, B. Innes, M. S. Roberts, T. Tsuzuki, T. A. Robertson, and P. McCormick, Human skin penetration of sunscreen nanoparticles: In-vitro assessment of a novel micronized Zinc Oxide formulation, Skin Pharmacol Physiol., 20(3), 148 (2007). https://doi.org/10.1159/000098701
  7. G. Battaini, E. Monzani, L. Casella, L. Santagostini, and R. Pagliarin, Inhibition of the catecholase activity of biomimetic dinuclear copper complexes by kojic acid, J. Biol. Inorg. Chem., 5(2), 262 (2000). https://doi.org/10.1007/s007750050370
  8. T. S. Chang, An updated review of tyrosinase inhibitors, Int. J. Mol. Sci., 10(6), 2440 (2009). https://doi.org/10.3390/ijms10062440
  9. W. J. Hu, L. Yan, D. Park, H. O. Jeong, H. Y. Chung, J. M. Yang, Z. M. Ye, and G. Y. Qian, Kinetic, Structural and molecular docking studies on the inhibition of tyrosinase induced by arabinose, Int. J. Biol. Macromol., 50(3), 694 (2012). https://doi.org/10.1016/j.ijbiomac.2011.12.035
  10. H. Z. Hill, W. Li, P. Xin, and D. L. Mitchell, Melanin: A two edged sword?, Pigment Cell Res., 10(3), 158 (1997). https://doi.org/10.1111/j.1600-0749.1997.tb00478.x
  11. M. Seiberg, Keratinocyte-melanocyte interaction during melanosome transfer, Pigment Cell Res., 14(4), 236 (2001). https://doi.org/10.1034/j.1600-0749.2001.140402.x
  12. N. D. Sung, H. S, Jung, and S. J. Kim, Hydrolytic reactivity and holographic quantitative structure-activity relationship analysis on the melanogenesis inhibitory activities of Alkyl-3,4-dihydroxybenzoate and N-Alkyl-3,4-dihydroxy benzamide derivatives, J. Soc. Cosmet. Scientists Korea, 30(4), 491 (2004).
  13. A. L. Vagstad, E. A. Hill, J. W. Labonte, and C. A. Townsend, Characterization of a fungal thioesterase having claisen cyclase and deacetylase activities in melanin biosynthesis, Chem. Biol., 19(12), 1525 (2012). https://doi.org/10.1016/j.chembiol.2012.10.002
  14. Korea Patent 10-1154233-0000 (2012).
  15. N. W. Boaz and S. K. Clendennen, A Green, Solvent-free biocatalytic method to produce cosmetic esters, Cosmetics & Toiletries, 124(7), 56 (2009).
  16. R. R. Mittal, L. Harris, R. A. McKinnon, and M. J. Sorich, Partial charge calculation method affects CoMFA QSAR prediction accuracy, J. Chem. Inf. Model., 49(3), 704 (2009). https://doi.org/10.1021/ci800390m
  17. H. Waterbeemd, Advanced computer-assisted techniques in drug discovery, 9, Wiley online library, Hoboken NJ USA (2008).
  18. Statistical modelling of molecular descriptors in QSAR/QSPR, eds. M. Dehmer, K. Varmuza, and D. Bonchev, 293, Wiley-Blackwell, Hoboken NJ USA (2012).
  19. J. H. Lee, P. K. Myung, S. J. Kim, and Nack-Do Sung, Minimum structural requirements for herbicidal evaluation of 5-(R1)-6-(R2)-N-(R3-phenyl)-pyrazine- 2-carboxamide analogues as new class potent herbicide, J. Korean Soc. Appl. Biol. Chem., 53(4), 440 (2010). https://doi.org/10.3839/jksabc.2010.068
  20. R. D. Cramer, J. D. Bunce, and D. E. Patterson, Crossvalidation, Bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies, Quant. Struct. Act. Relat., 7(1), 18 (1988). https://doi.org/10.1002/qsar.19880070105
  21. J. Verma, V. M. Khedkar, and E. C. Coutinho, 3D-QSAR in drug design - a review, Curr. Top. Med. Chem., 10(1), 95 (2010). https://doi.org/10.2174/156802610790232260
  22. R. D. Clark, and P. C. Fox, Statistical variation in progressive scrambling. J. Compt. Aided. Mol. Des., 18(7), 563 (2004). https://doi.org/10.1007/s10822-004-4077-z