DOI QR코드

DOI QR Code

Antioxidative and Anti-aging Effects of Extract from Talinum paniculatum

토인삼 추출물의 항산화 및 항노화 효과

  • 오정영 (한불화장품(주) 기술연구소) ;
  • 김진화 (한불화장품(주) 기술연구소) ;
  • 이근수 (한불화장품(주) 기술연구소) ;
  • ;
  • 표형배 (한불화장품(주) 기술연구소)
  • Received : 2013.06.07
  • Accepted : 2013.07.18
  • Published : 2013.12.31

Abstract

Ultraviolet irradiation in the cells and skin produces reactive oxygen species (ROS), which induces the synthesis of matrix metalloproteinases (MMPs) causing skin photoaging. Using the human dermal fibroblast (HDF), we investigated the antioxidative and anti-aging effects of the extracts from Talinum paniculatum. Talinum paniculatum leaf and stem extracts (LSE) showed free radical scavenging effect by 98.45% at 500 ${\mu}g/mL$ and superoxide radical scavenging effect by 97.01% at 500 ${\mu}g/mL$ in the xanthine/xanthine oxidase system. The photoprotective potential of LSE was tested in HDF exposed to ultraviolet irradiation. It was revealed that LSE had an inhibitory effect on MMP-1 expression in UVA-irradiated HDF without any significant cytotoxicity. The treatment of UVA-irradiated HDF with LSE resulted in dose-dependent decreases in the expression levels of MMP-1 mRNA and protein. Also, UVB-induced cytotoxicity and cell death were effectively suppressed by treatment of LSE. Additionally, the senescence-associated ${\beta}$- galactosidase (SA-${\beta}$-gal) activity was decreased in the presence of LSE. These results suggest that Talinum paniculatum leaf and stem extracts (LSE) may have anti-aging effects and can be used as new functional materials against oxidative stress-mediated skin damages.

본 연구에서는 예로부터 민간에서 사용되어진 약초인 토인삼 추출물의 피부보호 효과를 측정하기위해 항산화, 자외선에 의해 유도된 matrix metalloproteinases-1 (MMP-1) 발현저해효과, 자외선에 대한 세포보호효과, 노화세포를 이용한 senescence-associated ${\beta}$-galactosidase (SA-${\beta}$-gal) 활성을 사람 섬유아세포(HDF)를 이용하여 확인하였다. 그 결과, 토인삼 추출물의 free radical과 superoxide radical 소거효과는 처리농도가 증가함에 따라 농도 의존적으로 나타났으며, 토인삼 잎, 줄기 추출물(LSE) 500 ${\mu}g/mL$에서 98.45%와 97.01%의 DPPH와 superoxide radical을 소거하여 우수한 항산화 효과를 나타내었다. 토인삼 잎, 줄기 추출물(LSE)의 MMP-1의 발현 저해효과는 섬유아세포에서 UVA조사 실험에서 우수하게 나타났으며, UVB 조사에 의한 세포보호 효과도 우수하게 나타났다. 또한 노화세포를 이용한 SA-${\beta}$-gal활성은 토인삼 잎, 줄기 추출물(LSE)을 처리하였을 시 염색된 세포의 수가 감소하여 세포내 senescence를 억제하는 것을 확인할 수 있었다. 이상의 결과들을 종합해 보면, 토인삼의 지상부분인 잎, 줄기 추출물(LSE)은 항노화 및 항산화제로서의 우수한 특성으로 피부손상에 의한 산화적 스트레스에 대응하는 새로운 기능성 소재로서의 가능성을 가지는 것으로 평가된다.

Keywords

References

  1. A. Oikarinen, The aging of skin: chronoaging versus photoaging, Photodermatol. Photoimmunol. Photomed., 7, 3 (1990).
  2. B. A. Gilchrest, Skin aging and photoaging: an overview, J. Am. Acad. Dermatol., 21, 610 (1989). https://doi.org/10.1016/S0190-9622(89)70227-9
  3. J. Uitto, M. J. Fazio, and D. R. Olsen, Molecular mechanism of cutaneous aging, J. Am. Acad. Dermatol., 21, 614 (1989). https://doi.org/10.1016/S0190-9622(89)70228-0
  4. A. M. Klingman and R. M. Laver, Cutaneous aging: the differences between intrinsic aging and photoaging, J. Cutan. Aging. Cosmet. Dermatol., 1, 5 (1988).
  5. S. K. Karin, B. Peter, W. Jutta, H. Gernot, M. Weijan, K. Lale, M. Christian, and W. Meinhard, Photoaging of the skin from phenotype to mechanisms, Experimen. Gerontol., 35, 307 (2000). https://doi.org/10.1016/S0531-5565(00)00098-X
  6. J. Y. Seo, H. R. Choi, G. E. Rhie, C. S. Youn, W. W. Choi, J. A. Kim, J. H. Chung, K. H. Kim, K. H. Cho, and H. C. Eun, The effect of retinoic acid and vitamin C on the expression of the procollagen $\alpha$ 1(I), tropoelastin, and MMP-1 in human dermal fibroblast, Kor. J. Invest. Dermtaol., 8, 23 (2001).
  7. C. Bailly, S. Dreze, D. Asselineau, B. Nusgens, C. M. Lapiere, and M. Darmon, Retinoic acid inhibits the production of collagenase by human epidermal keratinocytes, J. Invest. Dermatol., 94, 47 (1990). https://doi.org/10.1111/1523-1747.ep12873342
  8. L. Hayflick and P. S. Moorhead, The serial cultivation of human diploid cell strains, Exp. Cell Res., 25, 585 (1961). https://doi.org/10.1016/0014-4827(61)90192-6
  9. G. P. Dimri, X. Lee, G. Basile, M. Acosta, G. Scott, C. Roskelley, E. E. Medrano, M. Linskens, I. Rubelj, O. Pereira-Smith, M. Peacocke, and J. Campisi, A biomarker that identifies senescent human cells in culture and in aging skin in vivo, Proc. Natl. Acad. Sci. U.S.A., 92, 9362 (1995).
  10. D. B. Yarosh, S. Boumakis, A. B. Brown, M. T. Canning, J. W. Galvin, D. M. Both, E. Kraus, A. O'Connor, and D. A. Brown, Measurement of UVB-induced DNA damage and its consequences in models of immunosuppression, Methods, 28, 55 (2002). https://doi.org/10.1016/S1046-2023(02)00209-8
  11. D. Kulms and T. Schwarz, Molecular mechanisms of UV-induced apoptosis, Photodermatol Photoimmunol Photomed., 16(5), 195 (2000). https://doi.org/10.1034/j.1600-0781.2000.160501.x
  12. V. A. Smits and R. H. Medema, Checking out the G(2)/M transition, Biochim. Biophys. Acta., 1519, 1 (2001). https://doi.org/10.1016/S0167-4781(01)00204-4
  13. J. Kim, C. W. Lee, E. K. Kim, S. J. Lee, N. H. Park, H. S. Kim, H. K. Kim, K. Char, Y. P. Jang, and J. W. Kim, Inhibition effect of Gynura procumbens extract on UVB-induced matrix-metalloproteinase expression in human dermal fibroblasts, J. Ethnopharmacol, 137, 427 (2011). https://doi.org/10.1016/j.jep.2011.04.072
  14. J. Y. Bae, J. S. Choi, Y. J. Choi, S. Y. Shin, S. W. Kang, S. J. Han, and Y. H. Kang, (-)Epigallocatechin gallate hampers collagen destruction and collagenase activation in ultraviolet-B-irradiated human dermal fibroblasts: involvement of mitogen-activated protein kinase, Food Chem. Toxicol., 46, 1298 (2008). https://doi.org/10.1016/j.fct.2007.09.112
  15. G. J. Fisher, S. C. Datta, H. S. Talwar, Z. Q. Wang, J. Varani, S. W. Kang, and J. J. Voorhees, Molecular basis of sun-induced premature skin ageing and retinoid antagonism, Nature, 379, 335 (1996). https://doi.org/10.1038/379335a0
  16. M. Komatsu, I. Yokoe, Y. Shirataki, and T. Tomimori, Studies on the constituents of Talinum paniculatum Gaertner. I, J. Pharm. Soc. Jap., 102, 499 (1982). https://doi.org/10.1248/yakushi1947.102.5_499
  17. H. Shimoda, N. Nishida, K. Ninomiya, H. Matsuda, and M. Yoshikawa, Javaberine A, New TNF-$\alpha$ and nitric oxide production inhibitor, from the Roots of Talinum paniculatum, Heterocycles, 55, 2043 (2001). https://doi.org/10.3987/COM-01-9318
  18. M. S. Blois, Antioxidant determinations by the use of a stable free radical, Nature, 181, 1199 (1958). https://doi.org/10.1038/1811199a0
  19. K. Furuno, T. Akasako, and N. Sugihara, The contribution of the pyrogallol moiety to the superoxide radical scavenging activity of flavonoids, Biol. Pharm. Bull., 25, 19 (2002). https://doi.org/10.1248/bpb.25.19
  20. T. Mosmann, Rapid colorimetric assay for the cellular growth and survival : application to proliferation and cytotoxic assay, J. Immun. Methods, 65, 55 (1983). https://doi.org/10.1016/0022-1759(83)90303-4
  21. A. Kitahara, U. Matsumoto, H. Ueda, and R. Ueoka, A remarkable antioxidation effect of natural phenol derivatives on the autoxidation of $\gamma$-irradiated methyl linolate, Chem. Pharm. Bull., 40, 2208 (1992). https://doi.org/10.1248/cpb.40.2208
  22. T. Hatano, Constituents of natural medicines with scavenging effects on ctive oxygen species-Tannins and related polyphenols, Natural Medicines, 49, 357 (1995).
  23. P. Kuppusamy and J. L. Zweier, Characterization of free radical generation by xanthine oxidase, J. Biol. Chem., 264, 9880 (1989).
  24. J. H. Chun, S. W. Kang, J. Varani, J. Lin, G. J. Fisher, and J. J. Voorhees, Decreased extracellular signal regulated kinase and increased stress activated MAP kinase activities in aged human skin in vivo, J. Invest. Dermatol., 115, 177 (2000). https://doi.org/10.1046/j.1523-1747.2000.00009.x
  25. K. Scharffetter, M. Wlaschek, and A. Hogg, UVA irradiation induces collagenase in human dermal fibroblasts in vitro and in vivo, Arch. Dermatol. Res., 283, 506 (1991). https://doi.org/10.1007/BF00371923
  26. M. Wlaschek, K. Bolsen, G. Herrmann, A. Schwarz, F. Wilmroth, P. C. Heinrich, G. Goerz, and K. Scharffetter, UVA induced autocrine stimulation of fibroblast derived collagenase by IL-6: a possilbe mechanism in dermal photodamage?, J. Invest. Dermatol., 101, 164 (1993). https://doi.org/10.1111/1523-1747.ep12363644
  27. H. C. Kim, J. S. Yang, Y. S. Chae, K. S. Suh, and S. T. Kim, The effect of all-trans-retinoic acid and ursolic acid on the ultraviolet a radiation induced AP-1 (Fos/Jun) activity in cultured human dermal fibroblasts, Kor. J. Invest. Dermtaol., 35, 1136 (1997).
  28. M. Barthelman, W. B. Bair, K. K. Stickland, W. Chen, B. N. Timmermann, S. Valcic, Z. Dong, and G. T. Bowden, (-)-epigallocatechin-3-gallate inhibition of ultraviolet B-induced AP-1 activity, Carcinogenesis, 19, 2201 (1998). https://doi.org/10.1093/carcin/19.12.2201
  29. G. J. Fisher, H. S. Talwar, J. Lin, P. Lin, P. McPhillips, Z. Q. Wang, X. Li, Y. Wan, S. W. Kang, and J. J Voorhees, Retinoic acid inhibits induction of c-Jun protein by ultraviolet radiation that occurs subsequent to activation of mitogen-activated protein kinase pathways in human skin in vivo, J. Clin. Invest., 101, 1432 (1998). https://doi.org/10.1172/JCI2153
  30. Y. W. Ryoo, S. I. Suh, K. C. Mun, B. C. Kim, and K. S. Lee, The effects of the melatonin on ultraviolet- B irradiated cultured dermal fibroblasts, J. Dermatol. Science, 27, 162 (2001). https://doi.org/10.1016/S0923-1811(01)00133-5