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Abstract 
 

In recent years, HTTP adaptive streaming (HAS) has attracted considerable attention as the 

state-of-the-art technology for video transport. HAS dynamically adjusts the quality of video 

streaming according to the network bandwidth and device capability of users. Content-Centric 

Networking (CCN) has also emerged as a future Internet architecture, which is a novel 

communication paradigm that integrates content delivery as a native network primitive. These 

trends have led to the new research issue of harmonizing HAS with the in-network caching 

provided by CCN routers. Previous research has shown that the performance of HAS can be 

improved by using the H.264/SVC(scalable video codec) in the in-network caching 

environments. However, the previous study did not address the misbehavior that causes video 

freeze when overestimating the available network bandwidth, which is attributable to the high 

cache hit rate. Thus, we propose a new SVC-based adaptation algorithm that utilizes a drop 

timer. Our approach aims to stop the downloading of additional enhancement layers that are 

not cached in the local CCN routers in a timely manner, thereby preventing excessive 

consumption of the video buffer. We implemented our algorithm in the SVC-HAS client and 

deployed a testbed that could run Smooth-Streaming, which is one of the most popular HAS 

solutions, over CCNx, which is the reference implementation of CCN. Our experimental 

results showed that the proposed scheme (SLA) could avoid video freeze in an effective 

manner, but without reducing the high hit rate on the CCN routers or affecting the high video 

quality on the SVC-HAS client. 
 

 

Keywords: bitrate selection, content-centric networking, HTTP adaptive video streaming, 

scalable video codec, video freeze time 
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1. Introduction 

At present, HTTP adaptive streaming (HAS) is a new state-of-the-art video streaming 

technology, which is based on the success of HTTP. Major companies such as Microsoft, 

Apple, and Adobe have developed their own streaming technologies, i.e., HAS [1], Live 

Streaming [2], and Dynamic Streaming [3], respectively. In addition, 3GPP and ITU-T 

provide Dynamic Adaptive Streaming over HTTP (DASH) [4][5] as the standard streaming 

service. Although the names and the details of these algorithms are quite different, they have a 

common design goal, which is the provision of seamless video streaming by dynamically 

adjusting the quality of a video stream depending on the user’s environment. More specifically, 

video content is divided into several video chunks and multiple quality levels are provided for 

each video chunk. Clients then select the most appropriate quality level by measuring the 

current network conditions on a moment-by-moment basis. 

HAS is basically designed for current IP-based Internet environments, but we considered 

Content-Centric Networking (CCN) [6] as our target network environment in the present study. 

CCN is a novel networking paradigm that makes content delivery the main network primitive, 

which means that routers can route using the content names and serve content, if available. In 

particular, CCN supports an in-network caching functionality by equipping a cache (storage), 

known as a content-store, to each CCN router. Therefore, the total amount of network traffic 

can be reduced if large volumes of popular content are served from local CCN routers, rather 

than the original content provider. 

However, the problem is that CCN treats different quality level video chunks from the 

same file as different content, even when these chunks are the same content from a human’s 

perspective. In this case, the HAS client might not benefit from the in-network caching of 

CCN if it requests a series of video chunks that are not cached in the local CCN routers
1
. To 

overcome this situation, the scalable video codec-based HAS (SVC-HAS) scheme [7][8][9] 

was proposed for content delivery network (CDN) environments where in-network caching is 

supported. In the H.264/SVC encoding scheme [10], each video chunk comprises one base 

layer and several enhancement layers. The base layer is essential for playing a video chunk, so 

it must always be downloaded after the request for each video chunk. Thus, the probability that 

the base layers persist in caches for a long period is quite high, which results in a high cache hit 

rate. However, we have observed that the SVC-HAS client frequently tries to select high 

quality level video chunks, for which the bitrate is larger than the bottleneck bandwidth, 

because it overestimates the current network bandwidth as the base layers are downloaded 

mostly from the cache of the local CCN routers. This misbehavior sometimes drains the 

client’s buffer by unnecessarily downloading higher quality enhancement layers, which results 

in video freeze when the buffer fullness drops below zero. 

In this study, we propose a new bitrate adaptation algorithm, referred to as SVC layer 

adaptation (SLA), for SVC-HAS in CCN environments. We develop a new drop timer to stop 

the downloading for the current video chunk in a timely manner and to move onto the next 

chunk when the timer expires. We implemented our algorithm in the SVC-HAS client and 

deployed it in a testbed that could run Smooth-Streaming, which is one of the most popular 

                                                           
1 We note that this study focuses mainly on the in-network caching capacity of CCN routers, but the same problem 

would occur in CDN- or HTTP-caching environments. Of the various in-network caching solutions, we selected 

CCN as our target environment because it is one of the most popular emerging future Internet architectures. 
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HAS solutions, over CCNx [11], which is the reference implementation of CCN. Our 

experimental results show that the proposed scheme is very effective in the CCN environment 

because it takes advantage of in-network caching and prevents the client’s buffer from being 

drained. 

The remainder of this paper is organized as follows. Section 2 presents some background 

and related work on HAS, video encoding/decoding schemes, and CCN, which are important 

for a clear understanding of the paper. In Section 3, we compare AVC-HAS with SVC-HAS 

and explain our motivation. Section 4 describes our new bitrate adaptation algorithm in detail. 

Section 5 describes the experimental methodology we used to run the adaptive video 

streaming over CCN. Section 6 summarizes our major results and findings. Finally, Section 7 

concludes the paper and discusses our future research plans. 

2. Related Work 

In this section, to facilitate a better understanding of this research, we provide an overview of 

previous studies related to adaptive video transmission, encoding/decoding frameworks, and 

CCN. 

2.1 Adaptive Video Transmission 

The main goal of HAS is to deliver video with a high quality of experience (QoE), even in 

dynamic network conditions. There are different implementations of HAS [1][2][3], but the 

basic idea is always the same. Before video streaming services, a single video is encoded at 

multiple bitrates and resolutions, typically 7–10 different rates, which range from 150 Kbps 

for mobile devices up to 6 Mbps for high definition. Each encoding is divided into video 

segments or chunks, which are typically 2–30 seconds in length. First, the client downloads a 

manifest file that contains information on the available audio and video streams, their 

encodings, and chunk durations. 

The client requests each chunk of video using HTTP. For each chunk download, the client 

estimates the network bandwidth and runs a rate determination algorithm (RDA) to determine 

the bitrate used to request the next chunk. Each request gives the client the opportunity to 

change the bitrate. During the selection of the bitrate, the RDA must consider the available 

bandwidth, CPU processing power, screen size, and the fullness of its buffer. The RDA must 

balance the desire to request high quality video with the need to prevent its buffer from 

draining in order to deliver the highest sustainable quality without stops or stutters. 

The HAS uses standard HTTP, so it easily traverses network address translations (NATs) 

and firewalls, and can utilize existing web infrastructures, such as caches, proxies, and CDNs. 

In addition, HTTP is stateless so no session information is required on the server side. Thus, 

the video bitrates and timing between requests are driven totally by the client. Recently, this 

type of approach has been discussed by standard bodies and MPEG-DASH (Dynamic 

Adaptive Streaming over HTTP) [5] is likely to be the first international standard for adaptive 

video streaming. We also note that the current HTTP (version 1.1) supports persistent 

connection, which allows multiple HTTP requests to use a single TCP connection. Therefore, 

it is assumed that there is only one TCP connection for each adaptive video streaming. 

2.2 Video Encoding/decoding 

As an emerging standard, H.264/SVC [12] has the added ability to adapt bitrates, which is a 

single type of encoding technique that has been extended from the H.264/MPEG-4 standard. 
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In this framework, a single video stream comprises multiple layers, i.e., a base layer and more 

than one enhancement layer [13]. The base layer is a mandatory requirement for playing the 

video and decoding, while the other enhancement layers provide a better quality video stream. 

However, there is a strong dependency between layers and the higher layers are rendered 

useless if any of the lower layers are missed, which demands fairly complex scheduling 

disciplines [14]. At present, the H.264/SVC standard can provide scalability in terms of the 

spatial, temporal, and quality domains. Many recent studies have investigated the optimal 

number of layers required to provide better QoE, depending on the device capability, the 

available network bandwidth, and the error rate [15][16]. 

2.3 Content-Centric Networking 

Over the last decade, the concept of Information-Centric Networking (ICN) has begun to 

attract much attention as a promising future Internet architecture, by adapting the network 

architecture to current network usage patterns, i.e., data dissemination. As a pioneering 

approach, TRIAD [17] explored the benefits of this novel networking paradigm. TRIAD uses 

URLs as names, i.e., user-friendly, structured, and location-independent identifiers, and an 

integrated directory is used to map from the DNS component of the URL to the closest 

available replica of the data. A number of other systems use distributed hash tables to route 

queries for content names, i.e., ROFL [18], i3 [19], and SEATTLE [20] are the most popular 

designs in this area. DONA [21] is another interesting design that replaces DNS using a 

combination of flat, self-certifying names, with a name-based anycast primitive on top of the 

IP layer. 

CCN [6] was proposed recently, which may be characterized by routing-by-name and 

in-network caching. A user explicitly requests content by broadcasting their interest with the 

content name to the network and any content router that hears the interest and that has 

appropriate data can respond with a data packet. Data is retrieved only in the response to an 

interest so a single Interest packet corresponds to a single data packet in each link, thereby 

enabling inherently multicasting. In addition, in-network caching contributes to a low 

dissemination latency and network load reduction by storing popular content at the network 

edge close to users. 

 

 
 

Fig. 1. Comparison of H.264/AVC and H.264/SVC HTTP adaptive streaming architectures. 
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3. Motivation 

3.1 Comparison of AVC-HAS and SVC-HAS 

Despite having the same video in the user context, AVC-HAS generates multiple 

(independent) versions of the content from the server/network perspective. Therefore, there is 

competition for storage or caching space, even for a single item of video content at each 

content server or router. To alleviate this inefficiency, there have been recent efforts to exploit 

the H.264/SVC codec in the video HAS framework [7][8][9][22]. In H.264/SVC, a single item 

of video content comprises a base layer and more than one enhancement layer in a hierarchical 

form, depending on the number of quality levels supported [12], as shown in Fig. 1. In 

addition to the base layer, higher video quality can be achieved as more enhancement layers 

are assembled during the decoding process on the client side. Because of these H.264/SVC 

sub-hierarchies, the base layer is essential for every quality level, which means that all of the 

video requests share some common parts, i.e., at least the base layer. In these in-network 

caching environments, therefore, the probability that base layers are cached will be very high 

because of the high request rate. H.264/SVC can improve the in-network caching efficiency
2
 

by aggregating video requests, i.e., the cache hit rate. 
 

 
(a) AVC cache hit rate 

 
(b) SVC cache hit rate 

Fig. 2. Comparison of the cache hit rates with AVC and SVC on the testbed. 
 

                                                           
2 A similar trend was observed in [7]. 
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Fig. 2 supports this suggestion, where SVC-encoded video content has a higher cache hit 

rate than AVC-encoded content with all cache size and replacement policy combinations. 

However, H.264/SVC requires more bits for each video quality level because of its 

hierarchical structure, i.e., there are encoding/decoding overheads of >10% between 

hierarchies [12]. To reduce these overheads, high efficiency video coding (HEVC) is the next 

generation codec, which is being developed by the ISO/IEC Moving Picture Experts Group 

(MPEG) and ITU-T Video Coding Experts Group (VCEG). SVC extensions are already in 

discussion, which will lead to lower encoding/decoding overheads compared with the existing 

H.264/SVC standard. 

 

 
Fig. 3. Buffer fullness with SVC-HAS RDA (cache size = 2000, bottleneck = 300 Kbps). 

 

3.2 Novel RDA for SVC-HAS 

In general, most RDAs used in widely deployed HAS clients assume a client-to-server model 

[22]. In this case, each client estimates the available bandwidth on the end-to-end path 

between the client and server to adjust the quality levels of the video chunks. In in-network 

caching environments, part of the video chunks can be cached at multiple points so the client 

may download the video chunk from any of multiple sources or in parallel [23]. This behavior 

makes it difficult to estimate and predict the network bandwidth. In the SVC-HAS framework, 

in particular, each video chunk comprises more than one segment (or layers), which makes the 

estimation and prediction of the network bandwidth even more difficult. For example, if the 

base layers of the requested video segments are cached in multiple content routers near the 

client, most of the video requests are satisfied from the caches, so the existing RDAs may 

decide to increase quality level. However, if no video segments related to higher quality levels 

of the video chunks in the caches are present near the client, their retrieval from the server 

takes a long time and the client’s buffer is consumed continuously. Fig. 3 shows the buffer 

fullness
3
 when the same content is requested repeatedly three, four, and five times, where the 

cache size of the intermediate content routers is 2,000 (in terms of CCN data packets) and the 

bottleneck link is 300 Kbps. In all cases, the buffer fullness always begins with 2 seconds 

because the client requests the same quality level for the first video chunk, e.g., 221 Kbps, and 
                                                           
3 The buffer fullness is defined as the playback buffer size at the player, which is measured in seconds [29]. 
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the RDA starts to work after the first chunk has been downloaded (the length of each video 

chunk is 2 seconds). Next, the buffer fullness exhibits different patterns depending on the 

cache hit rate and the quality level used. In particular, the buffer fullness drops below zero 

(which is referred to as a play-out freeze) if the downloading time of the enhancement layers is 

longer than the current buffer fullness. Thus, a novel RDA needs to be designed to prevent 

video freeze in an effective manner while maintaining a high quality level, even in highly 

dynamic environments. 

Recently, a new RDA was proposed that uses a sloping-based SVC heuristic [30][31]. In 

this scheme, a client performs either: (i) prefetching (downloading the base layer for future 

segments) or (ii) backfilling (downloading the enhancement layer for the current segments). A 

sloping-based heuristic was defined for this purpose where more backfilling is performed if 

the slope is steeper, whereas more base layers of new segments are downloaded if the slope is 

flatter. However, this method assumes that the rate (bandwidth) distribution is provided in 

advance and there is no dynamic slope adjustment scheme. Furthermore, to develop a dynamic 

adjustment policy for the sloping-based approach, an accurate bandwidth measurement is 

required, which is impossible in CCN environments due to the cache effect. Thus, the failure 

of slope adjustment will also result in video freeze in the same way as other RDAs. 

4. Proposed Method 

Our bitrate adaptation algorithm has two basic components: (i) bitrate selection for the next 

video chunk and (ii) SVC layer adaptation (SLA) based on the downloading status. We 

explain these functions in detail in the following subsections. 

4.1 Bitrate Selection 

Let Q = {q1,q2,···,qn} be a set of available video quality levels extracted from a manifest file, 

assuming that q1 indicates the lowest bitrate and qn is the highest. To select the bitrate, we need 

to measure the downloading bandwidth for the ith chunk, DBWi, as follows: 
 

/i i iDBW ChunkSize t                                                       (1) 

 

where ChunkSizei is the chunk size and ti is the download time for the ith chunk. Using this 

information, the bitrate for the ith chunk, xi is obtained as follows:  
 

 
1

1

,  1

max : ,  1i

i

q i
x

y y Q y DBW i


 

   
                                     (2) 

 

Thus, our algorithm always starts with q1 as the first video chunk. The next bitrate is 

determined by the downloading bandwidth of the previous chunk. For example, if Q = 

{50Kbps, 100Kbps, 150Kbps} and DBWi-1 is 120 Kbps, the next selected bitrate, xi, would be 

100 Kbps. We note that our algorithm is based on H.264/SVC, assuming that each chunk 

contains several layers. Therefore, the chunk size should be the summed data size for all the 

downloaded layers in a chunk. Similarly, the download time is determined by the layer with 

the longest download time. Moreover, some layers may be dropped during the download with 

our layer adaption algorithm, which we will explain in the next subsection. Thus, only 

completely downloaded layers will be considered for the chunk size and the download time. 
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Fig. 4. Example of SVC layer adaptation. 

 

4.2 SVC Layer Adaptation (SLA) 

The main design aim of our algorithm is to avoid video freeze in an effective manner, as 

discussed in Section 3. Fig. 4 outlines our basic strategy, i.e., dropping layers where the 

download time is too long. This figure shows that the selected bitrate increases to 1.0 Mbps 

based on the cache effect, by requesting the base layer and three enhancement layers in the 

(N+2)
th
 chunk. The third enhancement layer is not cached by the cache of the local CCN nodes 

in this example, which means that it will eventually drain the video buffer when the client tries 

to download it from the original content provider. This may lead to video freeze. The easiest 

way of preventing this phenomenon is to simply stop the download for the layer. It is difficult 

to predict whether a specific layer is cached in the local CCN nodes. Thus, our approach uses a 

drop timer, which drops the layers that are not completely downloaded before the timer 

expires
4
. 

For this purpose, we define two initial states in terms of the buffer fullness: low-buffer state 

and steady state. We also define a threshold for state transition, α, where the state begins with 

the low-buffer state when BF < α and is transited to the steady state when BF ≥ α, where BF is 

the current buffer fullness. In the low-buffer state, we need to fill up the buffer because the 

buffer fullness is relatively low. Therefore, the drop timeout is set to the length of a video 

chunk so the buffer fullness is at least not reduced during this state. If all of the requested 

layers are downloaded earlier than the timeout, the client immediately requests the next chunk, 

which increases the buffer fullness. In the steady state, it is permissible to increase the drop 

timeout to a larger number than the chunk length because the buffer fullness is sufficient to 

download more enhancement layers that are probably not stored in the local caches. Next, we 

define another threshold, β, which prevents video freeze. We set the drop timeout so the buffer 

fullness is not less than β during the download. In summary, the drop timeout (DTO) is reset as 

follows whenever a new chunk is requested:  
 

,  

( ),  

ChunkLength BF
DTO

ChunkLength BF BF



 


 

  
                                (3) 

 

                                                           
4 After the timer expires, we stop the ongoing HTTP download by closing its TCP connection. For the next video 

segments, a new TCP connection will be re-established because each video streaming maintains only one TCP 

connection based on the HTTP 1.1 specifications. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 7, NO. 10, Oct. 2013                            2438 

Copyright ⓒ 2013 KSII 

where ChunkLength is the length of a video chunk. If a timeout occurs, downloading is 

stopped for the video chunk and the next chunk is requested with a new selected bitrate. We 

note that the base layer is not dropped by the timer in all cases because the base layer is 

essential for playing the video chunk whereas the other enhancement layers are optional. Thus, 

although the download time of the base layer is larger than DTO, the next chunk request will 

be delayed until downloading of the base layer is completed. 

5. Experimental Environment 

This section describes the experimental environment we used to evaluate our new bitrate 

adaptation algorithm over CCNx [11], which is the reference implementation of CCN. Fig. 5 

outlines our testbed and its three main elements: the Smooth-Streaming server, CCN, and 

HAS client. 

We ran a well-known web server, Apache2, with the Smooth-Streaming extension [24] on 

a Linux (openSUSE 11.4) machine as the Smooth-Streaming server. We enabled adaptive 

video streaming for a test video clip, “Big Buck Bunny,” which is provided by Microsoft [25]. 

To enable SVC-based HAS, we encoded an original video clip using JSVM (version 9.19.14) 

[26] and the SVC reference codec, where the video clip was available at the following video 

encoding bitrates: 221, 429, 683, 1050, and 1503 Kbps. Note that each video chunk comprised 

one base layer and four enhancement layers. The base layer corresponded to the lowest quality 

level (i.e., 221 Kbps) and the encoding bitrate could increase up to 1,503 Kbps because the 

enhancement layers were sequentially stacked on top of the base layer. This information was 

transferred to the HAS client with a traditional Smooth Streaming manifest file. The length of 

each video chunk was 2 seconds. 

For the CCN, we ran the CCN reference code (ccnx-0.6.2) [11] on three Linux (openSUSE 

11.4) machines (CCN1 to CCN3) to enable CCN. In the following discussion, we refer to these 

machines as CCN nodes. We used HTTP Proxy and NetFetch, which are provided in the 

ccnx-0.6.2 release, to translate (IP) HTTP request/data packets into (CCN) interest/data 

packets and vice-versa. We used DummyNet [27] to control the network bandwidth and 

one-way delay, as shown in Fig. 5. In addition, we implemented LFU (in-cache LFU [28]) 

caching strategies in the CCN reference code. 

For the HAS client, we used a Windows XP machine with the SVC-HAS client. This client 

had two different adaptive streaming schemes: the traditional (original) scheme and the 

proposed (new) scheme. Similar to the existing HAS, the SVC-HAS client decided and 

requested the quality level of the video chunks based on an estimation of the bandwidth. It 

could then play each video chunk after receiving all of the requested base and enhancement 

layers of the chunk. The RDA of the SVC-HAS was the same as that used by the existing HAS. 

We refer to this scheme as the “traditional scheme” in the next section. The proposed scheme 

included our new layer adaptation algorithm (SLA) on top of the traditional scheme to avoid 

video freeze. 

Next, we provide an example to illustrate how the testbed operated (Fig. 5). The HAS 

client sent an HTTP request for a video chunk to the Smooth Streaming server. This HTTP 

request reached the HTTP Proxy (CCN1) where it was converted into several interest packets, 

each of which was forwarded to the next CCN node. If the content was not cached at any CCN 

node, the interest packets propagated toward NetFetch (CCN3). NetFetch converted the 

interest packets into a HTTP request and retrieved the desired content from the Smooth 

Streaming server. NetFetch split the HTTP response into several data packets, which were 
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then delivered as regular CCN data. These data were then forwarded across the CCN using 

information in the Pending Interest Table (PIT) and were cached at each node. The data 

packets were aggregated into a single video chunk at the HTTP Proxy, which then delivered 

the chunk to the HAS client as a response to the original HTTP request. Note that this strategy 

permits the running of a legacy HAS solution over CCN without any modifications to the HAS 

client. 

We considered a single item of video content (Big Buck Bunny) with a playback time of 

124 seconds. The length of each video chunk is 2 seconds in HAS, which means that there 

were 62 video chunks. In the experiments, we fixed the network delay at 10 ms while varying 

the network bandwidth among 300, 500, and 1000 Kbps. It has been reported that the delay 

does not have any significant effects on SVC-HAS solutions whereas the bandwidth 

significantly affects the results [31]. We also varied the cache size among 2000, 2500, and 

3000 content-objects
5
, and LFU was used as the cache replacement policy. For each set of 

network parameters, we instructed the client to download the same video content 10 

consecutive times to investigate the effect of in-network caching on the performance of 

SVC-HAS. The maximum buffer fullness was 21 seconds. 

 

 
Fig. 5. Testbed topology for video streaming over CCN. 

6. Performance Analysis 

In this section, we present our evaluation of the performance of the proposed scheme (SLA) 

compared with the traditional scheme (i.e., existing RDA within the SVC-HAS framework). 

We performed several experiments to select the SLA parameters, α and β. The following 

performance metrics were measured: (i) video freeze time, (ii) buffer fullness, (iii) video 

quality, and (iv) cache hit rate. After each video chunk was downloaded successfully, its 

selected bitrate and the current buffer fullness were recorded. For the video freeze time, we 

counted how many times the buffer fullness dropped below zero. In addition, the cache hit rate 

was defined as the number of cache hits at all intermediate CCN nodes, i.e., CCN1, CCN2, and 

CCN3 in Fig. 5, divided by the total number of interest packets generated by the HTTP Proxy. 

6.1 Selection of SLA Parameters 

To obtain robust values for α and β, we simulated an extreme case where the network 

bandwidth varied between 250 Kbps and 2 Mbps with intervals of 20 seconds. No 

                                                           
5 A content-object corresponds exactly to an item of content that a CCN data packet carries. 
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intermediate caches were used. In this environment, we measured the number of video freeze 

(VF) events and the selected bitrate (SB) several times, while varying α from 16.0 to 19.0 and 

β from 13.0 to 16.0. Next, we normalized the results against the maximum value so the 

normalized values ranged from 0 to 100. For video freeze events, a smaller number was 

translated into a higher normalized value because a low number indicated better performance. 

We defined the parameter metric used to combine these two normalized results as follows. 
 

 (  ) (1 ) (  )Parameter metric w normalized VF w normalized SB              (4) 

 

In this study, we used w = 0.7 as the number of video freeze events, which was an 

important performance metric. Fig. 6 shows the parameter metric results, which indicate that 

the performance was the best when we used 17.5 seconds for α and 14.5 seconds for β. Based 

on the results, we used these values in the following experiments. 
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Fig. 6. Parameter metric with different values of α and β using the SLA scheme. 

 

6.2 Video Freeze Time 

Table 1 shows the video freeze counts when the bandwidth bottleneck was set to 300 Kbps 

and 500 Kbps. As shown in Table 1, the traditional RDA produced a longer freeze time 

because the cache size was smaller or the number of download trials was lower. For example, 

when the cache size was 2,000 and the bottleneck was 300 Kbps, which corresponded to 35% 

of the total interest packets, each download trial had a long freeze time. In particular, the 

traditional RDA attempted to select higher quality levels for the next chunk because it 

overestimated the network bandwidth, but the combination of (the small amount of) the 

cached data and the network bottleneck was not sufficient to support a higher bitrate encoding. 

For the third download trial, in particular, when the cache sizes were 2,500, 3,000, and 4,000, 

there were frequent overestimations, which produced the highest freeze times among these 

configurations. According to LFU, the data chunks that corresponded to the base layer and the 
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low quality enhancement layer were cached at the CCN nodes. By contrast, SLA used the drop 

timeout to avoid overestimation and there were almost no frozen scenes during the 

transmission of a single video chunk, depending on the current download state. Thus, SLA 

effectively alleviated the negative impact of overestimating the network bandwidth. 

 
Table 1. Video freeze time (seconds) 

 
 

6.3 Buffer Fullness  

The buffer fullness allows the absorption of fluctuations in the network bandwidth to 

provide better QoE. The SLA maintains a level of buffer fullness by setting the timeout for 

each hierarchy on the requested video chunk. As shown in Fig. 7, the buffer fullness was 

higher than the existing RDA in the second and later download trials for each cache size when 

the bandwidth bottleneck was set to 300 Kbps. Thus, higher buffer fullness was achieved even 

when a high dynamic network bandwidth was produced by cache hits. In all cases, the average 

deviation per trial was also smaller, which meant that the SLA was more stable. Fig. 8 shows 

the case where the network bottleneck is set to 500 Kbps. Both RDAs had high buffer fullness 

because the throttling point was a slightly wider than that shown in Fig. 7. The download time 

of the top enhancement layer was shorter than the case shown in Fig. 8 when the available 

network bandwidth was overestimated. Furthermore, the SLA selected different timeout 

policies depending on the current download state, so the buffer fullness differed in the 

following download trials. Fig. 9 shows that there was a constant level of buffer fullness 

because of the wider network bottleneck and fewer changes in the bit rate. The number of 

hierarchies that were subject to timeouts was also small so there was almost no difference 

between the RDAs. 
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                 (a) Cache size = 2,000                         (b) Cache size = 2,500                        (c) Cache size = 3,000 

Fig. 7. Average buffer fullness (bottleneck bandwidth = 300 Kbps). 

 

 
                 (a) Cache size = 2,000                         (b) Cache size = 2,500                        (c) Cache size = 3,000 

Fig. 8. Average buffer fullness (bottleneck bandwidth = 500Kbps). 

 

 
                 (a) Cache size = 2,000                         (b) Cache size = 2,500                        (c) Cache size = 3,000 

Fig. 9. Average buffer fullness (bottleneck bandwidth = 1,000Kbps). 

 

6.4 Video Bitrate 

Fig. 10–12 show the average selected bitrates with different bottleneck bandwidths. As 

described in Section 5, the cache size was set to 2,000, 2,500, or 3,000 content-objects and, 

using these values, the CCN router could store approximately 35%, 44%, or 52%, respectively 

of the total interest packets generated during the delivery of a single video. In each of these 

figures, the average bitrates for the first download attempt were the same for both schemes 

because we reset the caches at the start of each experiment. 

Fig. 10(a)–(c) show that the SLA delivered similar or better performance in terms of the 

average bitrate compared with the traditional scheme when the bottleneck bandwidth was 300 

Kbps. In particular, Fig. 10(c) shows that the average bitrates with the traditional scheme at the 

7
th
, 8

th
, and 9

th
 attempts were exceptionally low whereas with SLA, the curve increasing 

continuously as the download attempts increased. This is because the SLA dropped the highest 

quality enhancement layers based on the drop timeout, even when the cache hit rate was high, 

and it used two CCN caches (i.e., the two CCN nodes before the bottleneck link) so most of the 

base layers and lower enhancement layers were cached evenly over the two CCN nodes. In the 

remaining time before the timeout, the client downloaded the highest quality enhancement 
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layers from the server located behind the bottleneck link. Overall, the average bitrates with 

SLA shown in Fig. 10(a)–(c) converged to 0.8, 1.0, and 1.4 Mbps, respectively, as the 

download attempts increased. Fig. 11 shows that the average bitrates were saturated at 1.0, 1.2, 

and 1.4 Mbps when the cache sizes were 2,000, 2,500, and 3,000, respectively. Thus, the client 

selected higher quality levels on average compared with Fig. 10, because the bottleneck 

bandwidth increased to 500 Kbps. When the bottleneck bandwidth was 1,000 Kbps, the high 

quality enhancement layers not present in the local caches were downloaded rapidly from the 

server, even when the download bandwidth was overestimated incorrectly on the client. Thus, 

drop timeouts occurred rarely with SLA because the bottleneck bandwidth (1,000 Kbps) 

covered the lower four quality levels (from 221 to 1,050 Kbps) directly. Therefore, there was 

no significant difference between the schemes in terms of the average bitrate, as shown in Fig. 

11. 

 

 
                (a) Cache size = 2,000                           (b) Cache size = 2,500                           (c) Cache size = 3,000 

Fig. 10. Average bitrate (bottleneck bandwidth = 300 Kbps). 

 

 
                (a) Cache size = 2,000                           (b) Cache size = 2,500                           (c) Cache size = 3,000 

Fig. 11. Average bitrate (bottleneck bandwidth = 500 Kbps). 

 

 
                (a) Cache size = 2,000                           (b) Cache size = 2,500                           (c) Cache size = 3,000 

Fig. 12. Average bitrate (bottleneck bandwidth = 1,000 Kbps). 

 

6.5 Cache Hit Rate 

Fig. 13 shows the cache hit rates at the CCN nodes. Fig. 13(a) shows that the SLA performed 

better in terms of the cache hit rate when the bottleneck bandwidth was relatively small. Our 
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scheme requested a smaller number of enhancement layers several times so those chunks were 

well positioned in the caches with LFU, whereas the traditional scheme caused cache pollution 

by unnecessarily requesting high quality video chunks. This also resulted in frequent video 

freezes, as shown in Section 6.1. Fig. 13(b) shows that there was a higher cache hit rate on 

average with all cache sizes compared with Fig. 13(a). It appears that both schemes utilized 

the caches well with the increased network bandwidth and they exhibited similar performance 

in this environment, as shown in Fig. 10 and Fig. 13(b). 

Fig. 13(c) shows that the cache hit rate was very low at <40% when the cache size was 

2,000. This was mainly because the client tried to request the highest quality video chunks 

based on the large network bandwidth. The cache size was not sufficient to cover such high 

quality video chunks (i.e., large chunks) and some chunks were removed continuously from 

the cache during video streaming, thereby resulting in a low cache hit rate. This phenomenon 

was mitigated by increasing the cache size, as shown in the figure, and we can see that the SLA 

had a higher hit rate when the cache size was 2,500. The traditional scheme immediately 

requested the highest bitrate from the start of the video stream, whereas SLA attempted to 

adjust the requested bitrate so the lower enhancement layers were cached steadily, rather than 

caching the highest quality enhancement layer. This resulted in a higher cache hit rate in Fig. 

13(c) and a slightly lower bitrate in Fig. 12(b)–(c). 

 

 
                (a) Bottleneck = 300Kbps                 (b) Bottleneck = 500Kbps                (c) Bottleneck = 1,000Kbps 

Fig. 13. Comparison of the cache hit rate and cache size. 

7. Conclusion 

In this study, we developed a new bitrate adaptation algorithm for SVC-HAS, which 

comprised bitrate selection and SLA. Our main finding was that the SVC-HAS client 

experienced frequent video freeze events in CCN environments. This was because the bitrate 

selection algorithm sometimes overestimated the network bandwidth because the base layers 

of video chunks were downloaded from the cache of the local CCN routers. Therefore, the 

client unnecessarily downloaded enhancement layers that were not cached, thereby draining 

the video buffer close to zero. To address this problem, we introduced a drop timer, which 

stopped the downloading of additional enhancement layers in a timely manner when the timer 

expired and moved onto the next chunk request. We implemented this method in the 

SVC-HAS client and deployed it in our CCN testbed for the performance evaluation. Our 

experiments confirmed that the SLA reduced the video freeze time significantly. We also 

found that our scheme delivered similar or better performance in terms of the average buffer 

fullness, average bitrate, and cache hit rate with different network parameters, network 

bandwidths, and cache sizes. 
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