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Abstract 
 

In order to ensure both of the whole system capacity and users QoS requirements in 

heterogeneous wireless networks, admission control mechanism should be well designed. In 

this paper, Multi-agent Q-learning based Admission Control Mechanism (MQACM) is 

proposed to handle new and handoff call access problems appropriately. MQACM obtains the 

optimal decision policy by using an improved form of single-agent Q-learning method, 

Multi-agent Q-learning (MQ) method. MQ method is creatively introduced to solve the 

admission control problem in heterogeneous wireless networks in this paper. In addition, 

different priorities are allocated to multiple services aiming to make MQACM perform even 

well in congested network scenarios. It can be observed from both analysis and simulation 

results that our proposed method not only outperforms existing schemes with enhanced call 

blocking probability and handoff dropping probability performance, but also has better 

network universality and stability than other schemes. 
 

 

Keywords: Admission control, multi-agent Q-learning, reinforcement learning, 

heterogeneous wireless network, resource management  
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1. Introduction 

One of the most crucial challenges in the next generation wireless networks is the fact that no 

one single wireless network technology can simultaneously provide seamless coverage and 

continuous high level QoS services when users roam around several representative spaces, just 

as office, campus and airport [1]. It is expected to combine existing different wireless access 

network technologies and take the complementary advantages of them to satisfy the increasing 

requirements of users. Among all wireless access networks, WCDMA possesses wide 

coverage but low data rate while WLAN offers relatively high data rate in small area 

(hotspots), so WCDMA/WLAN heterogeneous networks become attractive because of the 

perfect complementary feature of the two subnets.  

Admission control is always a key technology in any form of access networks, for it affects 

the performance of networks a lot [2][3][4]. Heterogeneous networks [5][6] aim to centralized 

control different access networks in just one unified system, thus it has to cope with multiplex 

mobility[7] patterns and more services types in a cooperative way. Consequently, admission 

control in heterogeneous networks faces more complicated environment. Furthermore, it 

intends to pursue maximum network profit and desired QoS quality of users simultaneously, 

which also brings difficulty for the design of admission control mechanism. 

Although a number of admission control mechanisms for heterogeneous networks have 

been proposed in many documents, an overall optimization is still on the way. Many methods 

only consider QoS requirements of users, just as access fee, bandwidth and the power 

consumption [8], and how to improve the integrated system revenue has not been carefully 

addressed. Some other researches [9][10][11] develop access solution for new call and handoff 

requests of ongoing users separately, so joint method is scarce. Multiple attribute decision 

(MAD) method in literature [12] is a classic measurement scheme which could meet the needs 

of users and system. MAD uses cost function with several parameters and corresponding 

weights. However, the weights given by experts are not accurate and can not adapt to the 

dynamic states of the network. The introduction of a model based markov decision process 

(MDP) [13] algorithm by Fei Yu, particularly the transition probability function in it makes 

the self-adaptability of access control algorithm possible. Unfortunately, the state space 

dimensions and computational complexity will increase dramatically with the increase of 

users for real networks. Yung-han Chen [14] makes fine attempts in this field by proposing the 

fuzzy Q-learning admission control (FQAC) system. He focuses on the access mechanism for 

both new and ongoing users. Single-agent Q-learning [15][16] in this system is a model-free 

reinforcement learning method that is no longer restrained by state dimensions. It achieves the 

optimal policy by self-learning process without knowing the framework of transition 

probability. Nevertheless, FQAC only concentrates on the policy of accepting or rejecting 

users as long as one call request happens, but does not take care of the other resource 

managements. In fact, service priority scheme and resource reservation should be taken into 

account if network congestion appears. Furthermore, all methods above don't handle multiple 

services effectively which is especially a key issue in heterogeneous network. Although some 

of them [17] have mentioned it, or even given out simulation results.  

Based on issues above, MQACM for WCDMA/WLAN heterogeneous networks is 

presented in this paper. WCDMA/WLAN heterogeneous networks environment in this paper 

includes one WCDMA subnet and one WLAN subnet. WLAN subnet overlaps on WCDMA 

and has smaller radius. The area that covered by both WCDMA subnet and WLAN subnet is 
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called double-coverage area, and the area just covered by WCDMA subnet is called 

single-coverage area. Previous documents [18][19] demonstrate that admission control for 

heterogeneous networks become complicated only in double-coverage area no matter a new 

call happens or an ongoing user needs to handoff from single-coverage area to 

double-coverage area. As a result, here we just pay more attention to the double-coverage area, 

so-called target region below. 

The main contributions and distinctions in our MQACM are four-fold. Firstly, we devise 

our MQACM primarily from the system perspective by employing load parameters as network 

states, and simultaneously satisfy users QoS requests by inversely inputting the QoS 

parameters as a feedback after the decision is carried out. This feedback is assistant 

information that could judge how correct the decision is. Secondly, we jointly cope with new 

and handoff users efficiently. A portion of resources are reserved for handoff users because 

ongoing call dropping is more intolerable than call blocking for users. Thirdly, in order to 

impose the universality of MQACM, different priority levels are assigned to multiple service 

types when network congestion happens. Last but not least, multi-agent Q-learning (MQ) is 

creatively adopted in this paper to solve the admission problem of heterogeneous networks. It 

ensures MQACM effective in any network situation. 

The rest of this paper is organized as follows. Section 2 investigates the system states 

analysis of the heterogeneous network of WCDMA/WLAN, in which the states of the 

networks will be described using load parameters. The mathematical design of MQACM is 

discussed in section 3 and then the convergence proof of MQ is given. Section 4 provides the 

simulation results. And conclusions are drawn in Section 5. 

2. Network States Analysis 

The admission control algorithm in this paper is designed from the perspective of increasing 

the network capacity and network utilization, and therefore the network load characteristic is 

used as the network states. Once such a load measurement is found, we could make decisions 

that whether or not admit the users with different service requirements based on the load 

situation. This section gives the network load parameters and explains the parameter choosing 

reason of WCDMA subnet and WLAN subnet separately. 

2.1 WCDMA System Load Parameter Analysis 

For WCDMA subnet, the state measurement is based on the number of users in many 

literatures [20]. This method is easy to operate but not as accurate as interference power based 

methods. Different users require different services, bandwidth and have different distance 

from the base station (BS). They have different influence on the load of the networks. Hence, 

interference power is used as the description of WCDMA subnet state, which is the input 

parameters for MQACM in section 3. 

At BS, suppose the number of users is N . iP  is transmission signal power received from 

user i . totalI  is the total received power including the background noise power nP . totalI can be 

written as 

 
1

N

total n i

i

I P P


  .  (1) 

For WCDMA system, the relation between the signal to interference plus noise ratio 

(SINR) [21] and iP  can be expressed as  
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where W is the chip rate, and
iv  is the activity factor. 

iR is the data rate of user i , and 
iL can be 

defined as the load factor of one link, 

 
01/[1 /( / ) ]i b i i iL W E N R v  . (3) 

Then the sum of load factor of each link and the interference from other cells, total load 

factor
UL , is expressed as 
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where f is the ratio of the inter-cell interference power to the intra-cell interference power. 

According to the definition of totalI and nP from(1) and the equation (2),(3), (4), it can be easily 

obtained that 

 

2

(1 ) ( )

(1 ) ( )

(1 ) ( )

total n UL
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
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 
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. (5) 

The increment of interference power for uplink can be expressed using integration, and 

integral interval is from the old value of total load factor ULold UL  to the new 

value ULnew UL L   , 
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, (6) 

where L is the load factor of the new link, given as 

 1

0

(1 )
( / )b

W
L

vR E N

   , (7) 

where R  is the data rate of the new user, and 0( / )bE N  is SINR of the new link. Thus, we can 

compute the increment of interference power when the load of the network changes. 

The WCDMA subnet is divided into four states according to interference power, which 

are  very lowI ,  lowI , highI ,  very highI . Accordingly, three interference thresholds 1I , 2I and 3I are set 

up. When the total interference power plus new interference power is 10 I I I   , the 

interference power belongs to verylowI ; when 1 2I I I I   , the interference power belongs 
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to
lowI ; when

2 3I I I I   , the interference power belongs to highI ; when
3I I I  , the 

interference power belongs to veryhighI . 

2.2 WLAN System Load Parameter Analysis 

Just as interference power is used to describe the load situation for WCDMA subnet, channel 

busyness ratio [22] is choosed for WLAN subnet. The channel busyness ratio is easy to be 

measured and it corresponds to the most important load performance index, i.e., throughput. 

Suppose p is the probability that there is at least one transmission among the neighbors in 

the observed back-off time slot, which is given by  

 11 (1 )n

tp p    , (8) 

where n is the number of users, and
tp is the transmission probability for each node in any 

back-off time. Suppose 1(1 )n

s t tp np p    and (1 )n

i tp p  are the probability that the data is 

successfully transmitted and the probability that the observed back-off time slot is idle, 

respectively. And 1c i sp p p   is the collision probability that there are at least two 

concurrent transmissions at the same back-off time slot. Obviously, all these three 

probabilities are functions of p . 

Let sT  be the average time period associated with one successful transmission and cT be the 

average time period associated with collisions. When the request-to-send/clear-to-send 

(RTS/CTS) mechanism is used, sT and cT can be expressed as 

 
3s RTS CTS ACK SIFS DIFSDATA

c RTS CTS SIFS DIFS

T T T T T T T

T T T T T

     

   
, (9) 

where
RTST ,

CTST , 
DATA

T , ACKT , SIFST , and 
DIFST represent the average time of RTS message, 

CTS message, data-transmission period, acknowledgement message, short inter-frame space, 

and distributed inter-frame space, respectively. Thus, it can be easily obtained that 

 
1 / ( )
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b i i s s c c

s s s i s s c c
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 


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

  
, (10) 

where is the length of an empty back off time slot, and sR is the channel utilization ratio, 

and bR is the channel busyness ratio. Once sR  is obtained, the normalized throughput th can 

be expressed as 

 ( ) /s sDATA
th R T T  . (11) 

Note that the normalized throughput is proportional to sR , and the channel busyness ratio is 

injective. In fact, when 0.1p  , bR  is almost the same as sR . Thus, it can monitor the 

normalized throughput by simply measuring the channel busyness ratio, which can be easily 

done since IEEE 802.11 is a CSMA-based MAC protocol working on physical and virtual 

carrier sensing mechanisms [23].  

Next, how to use bR to describe the state of WLAN is investigated. The normalized 

throughput is also a function in terms of p . To obtain the maximum normalized throughput, 

we take the derivative of ( )th p with respect to p and let it equal 0, i.e., 

 
d d

( ) ( ) 0
d d

Sth p R p
p p

  . (12) 

Moreover, for the specific number of user n , p has upper bound max( )p . Suppose that 
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rp is the root of (12). Let *p denote the optimal value of collision probability 

 min{ ,max( )}rp p p . (13) 

Then, the maximum throughput and the maximum
sR can be achieved. Finally, the 

maximum value
max *bR R p （ ）of

bR can be found.  

The WLAN subnet is also divided into four states according to channel busyness ratio, 

which is  bvery lowR ,
 b lowR , bhighR  , and  bvery highR . Accordingly, three channel busyness ratio 

thresholds
1bR ,

2bR , and
3bR are set up. When the channel busyness ratio is

10 b bR R  , the 

channel busyness ratio belongs to bverylowR ; when 1 2b b bR R R  , the channel busyness ratio 

belongs to blowR ; when 2 3b b bR R R  , the channel busyness ratio belongs to highR ; 

when 3 maxb bR R R  , the channel busyness ratio belongs to veryhighR .  

3. Design of MQACM 

This section describes the MQACM system framework and then explores MQ algorithm for 

threshold estimation block and network selection block. MQ algorithm needs some special 

definitions for the system state, actions and payoffs. The system states have been discussed in 

section 2. This section focuses on the design of actions and payoffs and then seeks detailed 

MQ steps for the two blocks.  

3.1 MQACM System Description 

Fig. 1 shows the framework of MQ based MQACM system. Two Q-learning blocks are 

designed here, network states threshold estimation block and network selection block. Each 

block owns an agent that executes different optional actions so as to learn the optimal policy. 

Network states discussed in section 2 are the input parameters for the two blocks. Immediate 

payoff is the feedback that indicates the actions of the two agents correct or not. The two 

agents share the information of network states and immediate payoff. 
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Fig. 1. Multi-agent Q-learning based MSACM framework. 

In heterogeneous networks, there are more complicated service types that often have 

different QoS requirements. For simplicity, two service types are considered here: Real Time 
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(RT) service type and Not Real Time (NRT) service type. NRT is more tolerant to delay, so we 

have reasons to believe that RT is more important than NRT. The threshold estimation block 

reserves 5% of the total network resources to avoid extortionate system saturation. By 

considering that handoff dropping is even more unbearable than call blocking for users, 

handoffX  percent resources are reserved for handoff services. The rest resources are divided in 

to two parts: the first part 
mixX  percent is shared by both RT and NRT service; the second part 

RTX  percent is kept for RT service to allocate higher priority to RT service. As shown in Fig. 

1, the threshold between 
RTX  and handoffX is

1TH . The threshold between 
mixX and 

RTX  

is 2TH . The agent in this block tries to learn the optimal dynamic distribution of 
1TH  

and
2TH . 

Coming out of the threshold estimation block, 
1TH  and 

2TH  are two important 

constraints to the next network selection block. The agent in network selection block aims to 

optimize the decisions of connecting users to WCDMA subnet or WLAN subnet. Suppose 

“ resource” is the percentage of the total resources that has already been occupied by the 

connected users. And the admission control mechanism could be: 

If 0 mixresource X  , accept all RT/NRT call requests; 

If
mix mix RTX resource X X   , accept RT call requests, and reject NRT call requests; 

If mix RT mix RT handoffX X resource X X X     , reject all new RT/NRT call requests, and 

accept handoff requests; 

If 1 5%mix RT handoffX X X resource     , reject all call requests. 

3.2 Single-agent Q-learning Method 

Q-learning is a self-learning method to optimize the kind of decisions that depend both on the 

current and the history state-action-pair. Agent in Q-learning system learns how to improve its 

decisions during the learning process according to its experience [24]. In a decision epoch t , 

the agent observes the network state e and implements an action a . When it arrives at the next 

epoch 1t  , the network environment indicates the action correct or not by giving the agent an 

immediate payoff ( , )tp e a , and then switches to a new state. In a single-agent Q-learning 

system, the agent updates a Q-table 1( , )tQ e a with the immediate payoff and a previous 

Q-value, 

  1 1( , ) (1 ) ( , ) ( , ) ( )t t t tQ e a Q e a p e a V e       . (14) 

Formula (14) shows the classic single-agent Q-learning method. Where 0 1  is the 

learning rate parameter. It is an important factor for the performance of the algorithm and need 

to be set reasonably. 0 1   is the system discount factor. The value function ( )tV e in (14) is 

defined as 

 ( ) max{ ( , )}t t
b

V e Q e b , (15) 

where b is the optional action in epoch t . The more correct the action a is, the larger 

( , )tp e a is. The agent finds the optimal policy ( )e A    by maximizing the total expected 

discounted payoffs, which can be denoted as 

 
0

( ) max E ( , )t

t

t

P e p e a








 
  

 
 , (16) 

where E is an operator that stands for expectation. 
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3.3 Multi-agent Q-learning Method 

In this paper, MQACM obtains the optimal decisions of threshold estimation block and 

network selection block through MQ method. Suppose i indicates -i th agent and =1,2,i n . 

Here =2n , that is to say, the system has two agents, one threshold estimation agent and one 

network selection agent. Thus, the single-agent Q-learning can be extended to MQ, in which 

the two agents share the same immediate payoff ( , )i

t i ip e a and 'i i

i

e eT information. Similarly, the 

system updates MQ-value table as follow, 

 

1 1

1 1 '

'

( , ) (1 ) ( , )

( , ) [ ] ( ')
i i

i

i i i

t i i t t i i

i i i i

t t i i e e i t i

e

MQ e a MQ e a

p e a T a V e



 

 

 

 

  
  

  


, (17) 

where ( , )i

t i iMQ e a  is MQ-value; 'i i

i

e eT is the state transition probability between the current 

state 
ie and the next state 'ie .The MQ-value 1( , )i

t i iMQ e a  holds previous MQ-value 

( , )i

t i iMQ e a with probability 1(1 )i

t  , and takes two parts with probability 1

i

t  : an immediate 

payoff 1( , )i

t i ip e a , and a discounted long-term value ( ')i

t iV e  for next state. ( ')i

t iV e  is controlled 

by an equilibrium strategy [25], 

 
1

( ') [ max ( ', )]
n

i i i

t i t j t i
b

j

V e EQ a MQ e b


  . (18) 

The equilibrium functions i

tEQ evaluate utilities for possible sets of next actions, and choose 

optimal actions which bring maximum MQ-values. 

Similar to the single-agent Q-learning algorithm, the total expected discounted payoff in 

MQ can be denoted as 

 
1 0

( ) max E ( , )
n

i

t i i

i t

P e p e a






 

 
  

 
 . (19) 

3.4 Action Definition 

Action definition for threshold estimation agent and network selection agent are addressed 

separately in this section. In threshold estimation block, the agent changes 1TH and 

2TH according to the system states and QoS feedback, so the definition of the action is 

increasing 1TH / 2TH by , keeping 1TH / 2TH unchanged or decreasing 1TH / 2TH by .The 

threshold action set 1A is 

 

1 1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

={[( ),( )],[( ),( )],[( ),( 0)],

[( 0),( )],[( 0),( )],[( 0),( 0)],

[( ),( )],[( ),( )],[( ),( 0)]}

A TH TH TH TH TH TH

TH TH TH TH TH TH

TH TH TH TH TH TH

    

 

    

     

     

     

, (20) 

where is adjustment quantity for 1TH and 2TH . It should be set reasonably to optimize the 

threshold estimation action speedily. 

In network selection block, if a new user triggers a call in the double-coverage area or an 

ongoing user tries to handover from single-coverage area to double-coverage area, the agent 

could connect the user to WCDMA subnet or WLAN subnet. On the contrary, if the 

new/handoff call happens in the single-coverage area, it only can be connected into WCDMA 

subnet. If there are not enough resources in both of the two subnets, the call will be rejected. 
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The chosen subnet is expected to make MQACM system receive the best payoffs. So the 

decision action that which subnet the user can be connected into is defined as a , which can be 

written as 

 

1 connect into WCDMA

2 connect into WLAN

3 keep in original subnet

4 reject

a





 



. (21) 

According to the action definition, the network selection action set
2A can be defined as 

 

2 _ _ _ _N _ _ _ _N _ _

_ _N _ _ _ _N _ _ /

_ _ / _ _ /

_ _ /

{[ , , , , ,

, , ], {1,4},

{1,3 4}, {1,2,4},

{2,3 4}}

s n RT s n RT s h RT s h RT d n RT

d n RT d h RT d h RT s n RT NRT

s h RT NRT d n RT NRT

d n RT NRT

A a a a a a

a a a a

a a

a





 



，

，

, (22) 

where _ _ /s n RT NRTa / _ _ /s h RT NRTa is the action for new/handoff user in single-coverage area; 

_ _ /d n RT NRTa / _ _ /d n RT NRTa is the action for new/handoff users in double-coverage area. 

3.5 Immediate Payoff Definition 

As mentioned in section 3.3, the two agents in MQACM share the same immediate payoff 

( , )i

t i ip e a information, so we obtain 1 2

1 1 2 2( , )= ( , )= ( , )t t tp e a p e a p e a . The immediate 

payoff ( , )tp e a with two parts is designed here. The first part is the traditional form that often 

appears in the classic Q-learning algorithm, that is 

 

_ _
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_ _ _ _

_ _ _ _

2 1/ 1

1 1/ 1

2 1, 1 / 1, 1
( , ) _

1 1, 1 / 1, 1

-1 new user is rejected/ handoff user drops

0 otherwise

s RT d NRT

s NRT d RT

d RT s RT s NRT d NRT

t

d NRT s NRT s RT d RT

n n

n n

n n n n
p e a access

n n n n

 


 
    

 
   





, (23) 

where _s RTn and _d RTn is the number of RT users in single-coverage area and double-coverage 

area respectively; _s NRTn and _d NRTn is the number of NRT users in single-coverage area and 

double-coverage respectively. RT users prefer to be connected to WCDMA network whereas 

delay-tolerant NRT users prefer WLAN network. If a new/handoff RT user is connected into 

WCDMA subnet, the immediate payoff is bigger; if a new/handoff NRT user is connected into 

WLAN subnet, the immediate payoff is bigger; if the handoff call drops or there are not 

enough resources for new user in the both of the two subnets, the new call will be blocked 

and ( , )_ 1p e a access   . 

Considering that the resulting performance of the implemented action should be not only 

related to the network-perceived service quality but also related to the QoS satisfaction degree 

of users, we propose an improved payoff function as the second part of the immediate payoff, 

which is defined as 
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2 2 2

( , ) ( , ) ( , )
( , ) _

t t t

t

R R e a D e a D E e a E
p e a QoS

R D E

  

  

         
         

            

, (24) 

where ( , )tR e a , ( , )tD e a and ( , )tE e a are the data rate, transmission delay and BER of users 

measured after the action is implemented at state
te . R , Dand E are the expected data rate, 

transmission delay and BER of users. Thus, the total immediate payoff function can be 

improved, and the total immediate payoff can be written as 

 ( , )= ( , )_ + ( , )_t t tp e a p e a access p e a QoS . (25) 

The bigger ( , )tp e a  is, the better effect the action has. The design of the immediate payoff 

function considers the benefit of both the network and users, so it can keep balance between 

network profit and users QoS requirements.  

3.6 Multi-agent Q-learning Steps for MQACM 

In this section, the detailed steps of MQ for MQACM are addressed and then MQ proposed in 

this paper is proved convergent with probability 1. First, define row vector 

   [ , , , ]c very low low high very highe I I I I . Where  very lowI ,
 lowI , highI , and  very highI  denote the four states in 

WCDMA subnet respectively, which have been discussed in section 2. Define row 

vector     [ , , , ]w bvery low b low b high bvery highe R R R R , where  bvery lowR ,  b lowR , bhighR and  bvery highR  denote 

the four states in WLAN subnet, respectively. The state vector of the system is given by 

 

         

          

  

[ , , , , ,

, , , , , ,

      ,

bvery low very low bvery low low bvery low high bvery low very high b low very low

b low low b low high b low very high b high very low b high low b high high

b high very high

E R I R I R I R I R I

R I R I R I R I R I R I

R I R



       , , , ]bvery high very low bvery high low bvery high high bvery high very highI R I R I R I

. (26) 

Action set 1A  and 2A  discussed in section 3.4 are available at each state te . The two agents 

implement an optional action respectively and the environment gives an immediate 

payoff 1( , )i

t i ip e a . Depending on the payoff and corresponding action, the system updates the 

MQ-value according to (17). MQ steps are explained in detail as below: 

1) Initialize MQ-value table for each agent. 

2) At each user arrival, according to the network states: 

a. Each agent selects an optional action in their action sets and memorizes it,  

b. Memorize the current network state i

te  at the arrival time and the next network state 

1

i

te  after the two agents take their actions. 

3) When the state of the heterogeneous network changes, calculate the immediate 

payoff 1( , )i

t i ip e a . 

4) Update the MQ-value matrix 1( , )i

t i iMQ e a according to equation (17). 

5) If 1 1 2( , ) , , /t i i i iMQ e a e E a A A     , convergence has occurred and stop learning. 

Otherwise continue learning by repeating steps 2-4. 

Now we end our design with the proof of the convergence for MQ. MQ is an extended 

version of single-agent Q-learning method. For every network state-action pair ( , )i ie a ，the 

value of 1( , )t i iMQ e a  is the change of MQ-value between before and after the action is 

implemented at every iteration. To examine the convergence of MQ method in MQACM, 

let 1
,

max ( , )
i i

t i i
e E a A

MQ e a
 

  be the convergence performance index. We prove that this 
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convergence performance index is bounded with a small value as follow: 

 

1
,

1
, , (0, )

1 ' 1 '
, , (0, )

' '

1
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max

i i

i i

i i i i
i i

i i

i i
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i i i i i i i
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' 1
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i i
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e
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
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

 
    

   
     

   

   
      

   





. (27) 

From [25], we know a conclusion that the value of immediate payoff ( , )i

t i ip e a  is bounded 

with i , which is obvious in our immediate payoff definition. Where i  is a defined 

probability, 

 1( , ) ( , )i i i

t i i t i ip e a p e a    . (28) 

By [26], we know a theorem in single-agent Q-learning: given bounded immediate payoffs 

( , )tp e a  , learning rate parameter 0 1  and 

 2

1 1

( , ) , ( ( , )) , ,j j

j j

e a e a e a 
 

 

      . (29) 

Then ( , ) *( , )tQ e a Q e a as n , ,e a , with probability 1. Where, *( , )tQ e a is optimal 

value of ( , )tQ e a , and  is the largest ( , )tp e a . And it is simple to prove that all the 

convergence conditions above are satisfied in the last part of (27). As n , 

 

1 1

1

( ) max{ ( , )} *( , )

( ) max{ ( , )} *( , )

( ) ( ) 0

t t
b

t t
b

t t

V e Q e b Q e b

V e Q e b Q e b

V e V e

 



  


  

  

. (30) 

Using (27), (28) and (30), 

 1
, , , (0, )

max ( , ) max
i ii i

i i

t i i
e E a A e E a A t

MQ e a  
     

   . (31) 

Thus we prove that 1
,

max ( , )
i i

t i i
e E a A

MQ e a
 

 is bounded with i . Now (30) and (31) show that 

MQ-value converges to a fixed value with probability of 1, where epoch t increases to infinity. 

4. Simulation and Discussion 

4.1 Simulation Environment 

Our simulation is conducted with the following settings in the integrated WCDMA/WLAN 

system. For WCDMA subnet, the coverage radius of the BS is 1 km. The channel suffers 

AWGN noise, log-normal shadowing, and multipath fading. Perfect power control is used in 

the system. For WLAN subnet, the coverage radius of the AP is 100 meters. IEEE 802.11b is 

used and the average bit rate is assumed to be 11Mbps. Rayleigh channel model is considered. 
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The other parameters are given in Table 1. 
Table 1. Network parameters used in the simulation 

Parameter Notion Value 

Path-loss exponent L 4.35 

Spread spectrum factor F 4-256 

Time required to transmit a request-to-send (RTS) TRTS 15µs 

Time required to transmit a clear-to-send (CTS) TCTS 10µs 

Time required to transmit a ACK TACK 10µs 

Short inter-frame space (SIFS) TSIFS 10µs 

Distributed inter-frame space (DIFS) TDIFS 50µs 

Learning parameter α 0.1 

Discount factor γ 0.95 

In simulation, the arrival rate of new (handoff) calls in WCDMA/WLAN obeys the 

Poisson process [27] and the mean arrival rate is
n (

h ), and
n h    . A call request could 

be a RT call or a NRT call with the possibility of 60% and 40%, respectively. For simplicity, 

the simulation uses voice call and data call to represent RT and NRT service, respectively. 

Users are assumed to be uniformly distributed in WCDMA/WLAN and the mobility model is 

random-walk model [28]. All access transmissions of users are always on. The system QoS 

requirements are listed in Table 2.  

Table 2. QoS requirement for different service types 

Traffic Type Transmission Delay Data Rate BER 

Voice call  <150ms 32kbps 10
-3

 

Data call  <1000ms 128kbps 10
-6

 

4.2 Simulation Results 

The simulation evaluates the relative performance of MQACM proposed in this paper by 

comparing it with an existing model based MDP Algorithm in literature [13] and a 

single-agent Q-learning algorithm (FQAC) in literature [14].  
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Fig. 2. Normalized throughput of new NRT call under different arrival rate. 

Fig. 2 demonstrates the normalized throughput of new NRT call at the corresponding 

heterogeneous network arrival rate (  ) on the X axis. The definition of the normalized 
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throughput is shown in equation (11). From the figure, we can observe that the normalized 

throughput of all the three algorithms increases to their maximum value around 0.6  , and 

then reduces as increases until the network becomes saturated. Actually, it is not hard to 

understand. The largest throughput should not be achieved when the network arrives at 

saturation condition. NRT services are firstly considered to be attached to WLAN subnet. 

When   is extremely high, the collision probability in WLAN becomes greater, so the 

throughput of NRT call reduces. It also can be seen from Fig. 2 that MQACM always 

performs better than the other two algorithms. The reasons are that MQACM adopts MQ 

which can adapt to system states dynamics with its self-learning capability and can always 

appropriately make decisions to admit or reject the new (handoff) call by the intelligent 

method.  
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Fig. 3. New NRT call blocking probability under different arrival rate 
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Fig. 4. New RT call blocking probability under different arrival rate. 

Fig. 3 and Fig. 4 show the new NRT and RT call blocking probability under different 

arrival rate respectively. The blocking probability using the MQACM is much lower than that 

using the other two algorithms for both NRT and RT call. It is because MQACM uses load 

parameters to describe the network states, and receives accurate feedback of users QoS 
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immediately after the action is executed. That guarantees tradeoff between the network 

capacity and the QoS requirements of users. Additionally, we distribute higher priority to RT 

call in threshold estimation block. That is why the blocking probability of RT call is lower than 

that of NRT call in Fig. 3 and Fig. 4. 
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Fig. 5. NRT handoff call dropping probability under different arrival rate. 
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Fig. 6. RT handoff call dropping probability under different arrival rate. 

Fig. 5 and Fig. 6 illustrate how RT and NRT handoff call dropping probabilities behaves 

under different arrival rate. In MDP, the dimension and the computation complexity will 

increase dramatically with the increase of states. And FQAC does not reserve resources for 

more important handoff service requests. As a result, MQACM obtains better performance of 

handoff call dropping probability for both RT and NRT services than MDP and FQAC. 

Moreover, RT and NRT handoff call dropping probabilities are almost the same in MDP and 

FQAC without allocating higher priority for RT service. 

In Fig. 7, the handoff numbers increase with the growth of the arrival rate. We can see that 

MQACM cuts down the meaningless handoff numbers and avoids ping-pong effect 

substantially. It is due to the fact that long time learning process in our MQACM makes the 

agent of the network selection system know what handoff is unnecessary. For example, if a 
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user with high speed in single-coverage area moves into double-coverage area, the agent may 

not change his access subnet by considering that this user would move out of double-coverage 

area and go back to the single-coverage area quickly. Furthermore, the handoff number 

performance is more stable in the two Q-learning algorithms (FQAC and MQACM). It is 

because Q-learning is an online method and is able to optimize the state transition probability 

until it approximates to the actual network state transition. On the contrary, MDP defines the 

transition probability offline according to certain rules, so it absolutely will not be that 

accurate. The reason why MQACM is more stable than FQAC is that the threshold block 

improves the convergence rate of MQ.  
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Fig. 7. Handoff numbers per minute under different arrival rate. 
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Fig. 8. The total discounted payoff under different arrival rate. 

Fig. 8 shows the total discounted payoff of different service types, which is defined by (21). 

It can be obviously found that our MQACM receives a much better payoff performance than 

the other two methods for both RT and NRT call. The total payoff of RT and NRT call in 

MQACM is about 4 and 2 times than that in MDP and FQAC method respectively. That is 

owing to the self-learning capacity of Q-learning that could adapt to the system variation. 

Therefore, systems with Q-learning algorithm (FQAC and MQACM) are able to 
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accommodate more users and make better admission decisions while maintaining QoS 

guarantee. And they obtain much payoff than MDP. Besides, MQACM uses MQ for both 

network selection and threshold estimation block, which enhances the network selection 

process even no sufficient resources left in the system. It means MQACM can handle the 

network jam situation better than FQAC which uses single-agent Q-learning. 
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Fig. 9. Call success rate under different value of 

2TH . 

Fig. 9 vividly describes the call success rate under different value of 2TH  for different 

number of RT and NRT users. From the figure we can see that call success rate of RT call 

increases and call success rate of NRT call reduces with the increase of 2TH . The reason is 

that the bigger the value of 
2TH  becomes, the more resources is reserved for RT users. And 

that is also why the effect of 2TH  for the call success rate performance is more obvious in the 

situation that the number of RT users is smaller (RT=4). The intersection of the black and the 

blue curves, and the intersection of the green and the red curves are the optimal values of 2TH  

for different number of users, which guarantee the call success rate for both RT and NRT call. 
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Fig. 10. MQ convergence performance under different iteration times. 
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Fig. 10 shows that 1
,

max ( , )
i i

t i i
e E a A

MQ e a
 

 reduces quickly with the increase of iteration 

times. In other words, simulations illustrate that MQ method can receive good convergence 

performance. Thus, heterogeneous network system can be always in a stable state after MQ 

converges. 1
,

max ( , )
i i

t i i
e E a A

MQ e a
 

 stays unchanged at the beginning of the iteration because the 

initial value of MQ-value is set to be 0, while it has no performance effect in the algorithm 

design. It also shows the impact of learning parameter i on 1
,

max ( , )
i i

t i i
e E a A

MQ e a
 

 .The 

convergence rate is more quick when 0.1i  , i.e., the greater the i is, the stronger the 

learning ability of MQ is. However, the initial value of 1
,

max ( , )
i i

t i i
e E a A

MQ e a
 

 when 0.1i  is 

two times as big as that when 0.05i  . When i becomes greater, the change span of 

1
,

max ( , )
i i

t i i
e E a A

MQ e a
 

 becomes much bigger, which means the algorithm stability is lower.  

5. Conclusion and Future Work 

This paper originally proposed a multi-agent Q-learning to investigate the problem of 

admission control in WCDMA/WLAN heterogeneous networks. It provided efficient 

admission control policy for both new and handoff users thanks to the self-learning feature of 

multi-agent Q-learning method. In addition, the agent in threshold estimation block reserved 

parts of resources for handoff and RT call. This mechanism ensured the effectiveness of 

MQACM in the network jam situation, which resulted in a better universality than the other 

methods. Our MQACM could access more users while guaranteeing the QoS of users. Finally, 

the convergence proof of MQ was given. 

MQACM in this paper is developed for WCDMA/WLAN heterogeneous networks. 

Actually, besides WCDMA and WLAN sub-networks, MQACM can be extended to 

heterogeneous networks including many types of networks in future. 
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