DOI QR코드

DOI QR Code

Enhancement in solar cell efficiency by luminescent down-shifting layers

  • Ahmed, Hind A. (Dublin Energy Lab,Dublin Institute of Technology) ;
  • Walshe, James (Dublin Energy Lab,Dublin Institute of Technology) ;
  • Kennedy, Manus (Dublin Energy Lab,Dublin Institute of Technology) ;
  • Confrey, Thomas (Dublin Energy Lab,Dublin Institute of Technology) ;
  • Doran, John (Dublin Energy Lab,Dublin Institute of Technology) ;
  • McCormack, Sarah.J. (Trinity College Dublin)
  • Received : 2013.08.13
  • Accepted : 2013.10.15
  • Published : 2013.06.25

Abstract

In this paper, core-shell semiconductor quantum dots (QDs) CdSeS/ZnS with emission at 490 nm and 450 nm were investigated for their use in luminescent down-shifting (LDS) layers. Luminescent quantum yield (LQY) of the QDs measurements in solution proposed that they were suitable candidates for inclusion in LDS layers. QDs were encapsulated in poly(methyl,methacrylate) (PMMA) polymer matrix and films were fabricated of $134{\pm}0.05$ microns. Selections of organic dyes from BASF Lumogen F range were also investigated for their use as LDS layers; Violet 570 and Yellow 083. The addition of LDS layers containing Violet 570 dye demonstrated a unity LQY when encapsulated within a PMMA matrix. A PV device of an LDS layer of Lumogen Violet 570 deposited on top of a crystalline silicon cell was fabricated where it was demonstrated to increase the efficiency of the cell by 34.5% relative.

Keywords

References

  1. Ahn, T.S., Al-Kaysi, R.O., Mueller, A.M., Wentz, K.M. and Bardeen, C.J. (2007), "Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements", Rev. Sci. Instrum., 78, 086105. https://doi.org/10.1063/1.2768926
  2. Attia, M.S., Khalil, M.M., Abdel Shafi, A.A., Attia, G.M., Failla, S., Consiglio, G., Finocchiaro, P. and Abdel Mottaleb, M.S. (2006), "Factors affecting the efficiency of excited-states interactions complexes between some visible light-emitting lanthanide ions and cyclophanes containing spirobiindanol phosphonates", Int. J. Photoenergy, 2007, 1-7.
  3. Cheng, Z., Su, F., Pan, L., Cao, M. and Sun, Z. (2010), "CdS quantum dot-embedded silica film as luminescent down-shifting layer for crystalline si solar cells", J. Alloy. Compd., 494(1-2), L7-L10. https://doi.org/10.1016/j.jallcom.2010.01.047
  4. Danos, L., Parel, T., Markvart, T., Barrioz, V., Brooks, W.S.M. and Irvine, S.J.C. (2012), "Increased efficiencies on CdTe solar cells via luminescence down-shifting with excitation energy transfer between dyes", Sol. Energ. Mat. Sol. C., 98, 486-490. https://doi.org/10.1016/j.solmat.2011.11.009
  5. Hovel, H.J, Hodgson, R.T. and Woodall, J.M. (1979), "The effect of fluorescent wavelength shifting on solar cell spectral response", Sol. Energ. Mat., 2(1), 19-29. https://doi.org/10.1016/0165-1633(79)90027-3
  6. Jobin Yvon Ltd. (2013), A guide to recording fluorescence quantum yields, Available online at http://faculty.washington.edu/champak1/quantumyieldstrad.pdf. Last accessed 25/07/2013.
  7. Kennedy, M., McCormack, S.J., Doran, J. and Norton, B. (2009), "Improving the optical efficiency and concentration of a single-plate quantum dot solar concentrator using near infra-red emitting quantum dots", Sol. Energy, 83(7), 978-981. https://doi.org/10.1016/j.solener.2008.12.010
  8. Klampaftis, E., Ross, D., McIntosh, K.R. and Richards, B. (2009), "Enhancing the performance of solar cell via luminescent down-shifting of the incident spectrum: a review", Sol. Energ. Mat. Sol. C., 93(8), 1182-1194. https://doi.org/10.1016/j.solmat.2009.02.020
  9. Klampaftis, E., Ross, D., Seyrling, S., Ayodhya N., Tiwari, A.N. and Richards, B.S. (2012), "Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material", Sol. Energ. Mat. Sol. C., 101, 62-67. https://doi.org/10.1016/j.solmat.2012.02.011
  10. Lakowicz, J. R. (2006), Principles of Fluorescence Spectroscopy, Springer, (3rd Ed.), New York, USA.
  11. Le Donne, A., Dilda, M., Crippa, M., Acciarri, M. and Binetti, S. (2011), "Rare earth organic complexes as down-shifters to improve si-based solar cell efficiency", Opt. Mater., 33(7), 1012-1014. https://doi.org/10.1016/j.optmat.2010.10.005
  12. McIntosh, K.R., Lau, G., Cotsell, J.N., Hanton, K. and Batzner, D.L. (2009), "Increase in external quantum efficiency of encapsulated silicon solar cells froma luminescent down-shifting layer", Prog. Photovoltaics, 17(3), 191-197. https://doi.org/10.1002/pip.867
  13. Ross, D., Klampaftis, E., Fritsche, J., Bauer, M. and Richards, B.S. (2012), "Increased short-circuit current density of production line CdTe mini-module through luminescent down-shifting", Sol. Energ. Mat. Sol. C., 103, 11-16. https://doi.org/10.1016/j.solmat.2012.04.009
  14. Rothemund, R., Kreuzer, S., Umundum, T., Meinhardt, G., Fromherz, T. and Jantsch, W. (2011), "External quantum efficiency analysis of si solar cells with II-VI nanocrystal luminescent down-shifting layers", Energy Procedia, 10, 83-87. https://doi.org/10.1016/j.egypro.2011.10.157
  15. Rowan, B.C., Wilson, L.R. and Richards, B.S. (2008), "Advance material concept for luminescent solar concentrators", IEEE J. Quantum Elect., 14(5), 1312-1322. https://doi.org/10.1109/JSTQE.2008.920282
  16. Strumpel, C., McCann, M., Beaucarne, G., Arkhipov, V., Slaoui, A., Svrcek, V., Del Canizo, C. and Tobias, I. (2007), "Modifying the solar spectrum to enhance silicon solar cell efficiency - an overview of available materials" Sol. Energ. Mat. Sol. C., 91(4), 238-249. https://doi.org/10.1016/j.solmat.2006.09.003
  17. Van der Ende B.M., Aarts L. and Meijerink A. (2009), "Lanthanide ions as spectral converters for solar cells", Phys. Chem. Chem. Phys., 11, 1108-1195.
  18. Sark, W.G.J.H.M. van, Barnham, K.W.J., Slooff, L.H., Chatten, A.J., Buchtemann, A., Andreas Meyer, A., McCormack, S.J., Koole, R., Farrell, D.J., Bose, R., Bende, E.E., Burgers, A.R., Budel, T., Quilitz, J., Kennedy, M., Toby Meyer, Donega, C. De Mello., Meijerink, A., Vanmaekelbergh, D. (2008), "Luminescent solar concentrators - a review of recent results", Opt.Express, 16(26), 21773-21792. https://doi.org/10.1364/OE.16.021773
  19. Williams, A.T.R., Winfield, S.A. and Miller, J.N. (1983), "Relative fluorescence quantum yields using a computer controlled luminescence spectrometer", Analyst, 108, 1067-1071. https://doi.org/10.1039/an9830801067
  20. Wilson, L.R. and Richards, B.S. (2009), "Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators", Appl. Optics, 48(2), 212-220. https://doi.org/10.1364/AO.48.000212

Cited by

  1. Plasmonic luminescent down shifting layers for the enhancement of CdTe mini-modules performance vol.141, 2017, https://doi.org/10.1016/j.solener.2016.11.036
  2. External Quantum Efficiency Improvement with Luminescent Downshifting Layers: Experimental and Modelling vol.2016, 2016, https://doi.org/10.1155/2016/8543475
  3. Increased short-circuit current density and external quantum efficiency of silicon and dye sensitised solar cells through plasmonic luminescent down-shifting layers vol.126, 2016, https://doi.org/10.1016/j.solener.2016.01.003
  4. Thermal Degradation of Poly Methy Methacrylate (PMMA) Doped with Optically Active Molecules/Applications in Photovoltaic Conversion vol.4, pp.4, 2016, https://doi.org/10.18178/ijoee.4.4.209-212
  5. Luminescent down shifting CdTe colloidal quantum dots for enhancing polycrystalline silicon solar cells vol.169, pp.None, 2013, https://doi.org/10.1016/j.ijleo.2018.05.046
  6. Combined Experimental and Modeling Analysis for the Development of Optical Materials Suitable to Enhance the Implementation of Plasmonic-Enhanced Luminescent Down-Shifting Solutions on Existing Silico vol.3, pp.6, 2013, https://doi.org/10.1021/acsaelm.1c00018
  7. Application of heterostructured CdS/ZnS quantum dots as luminescence down-shifting layer in P3HT:PCBM solar cells vol.237, pp.None, 2013, https://doi.org/10.1016/j.jlumin.2021.118178