DOI QR코드

DOI QR Code

Long-chain alcohols derived from the microalga Monoraphidium

  • Yang, Xuewei (Key Engineering Laboratory for Algal Biofuels, School of Environment and Energy, Peking University Shenzhen Graduate School) ;
  • Dai, Xin (Key Engineering Laboratory for Algal Biofuels, School of Environment and Energy, Peking University Shenzhen Graduate School) ;
  • Zhang, Rui (Key Engineering Laboratory for Algal Biofuels, School of Environment and Energy, Peking University Shenzhen Graduate School) ;
  • Shao, Cong (Key Engineering Laboratory for Algal Biofuels, School of Environment and Energy, Peking University Shenzhen Graduate School) ;
  • Geng, Shu (Key Engineering Laboratory for Algal Biofuels, School of Environment and Energy, Peking University Shenzhen Graduate School) ;
  • Chen, Guangyi (Tianjin University Center for Marine Environmental Ecology, school of Environmental Science and Engineering, Tianjin University) ;
  • Liu, Xianhua (Tianjin University Center for Marine Environmental Ecology, school of Environmental Science and Engineering, Tianjin University) ;
  • Wang, Guangyi (Key Engineering Laboratory for Algal Biofuels, School of Environment and Energy, Peking University Shenzhen Graduate School)
  • Received : 2013.04.07
  • Accepted : 2013.10.02
  • Published : 2013.06.25

Abstract

This study was to investigate the composition and characteristics of long-chained alcohols extracted from the algal strain Monoraphidium 3s35. The production of biomass was optimized using different cultivation methods. Under the aerated growth condition, this strain yielded up to 37.26% extracts of dry weight and $576mgL^{-1}$ biomass. The major compounds of the extracts are mainly long-chained alcohols (89.24%), with carbon chain length ranging from 12 to 20. Interestingly, or the long-chained alcohols, 3-(2-Methoxyethyl)-1-nonanol, 3,7,11,15-Tetramethyl-2-hexadecen-1-ol and oleyl alcohol accounted for 53.68%, 23.45%, and 12.11%, respectively. Because of their amphipathic nature, these long-chained alcohols have been widely used in bioenergy production and cosmetics industry. Furthermore, Monoraphidium 3s35 produced 9.73% of $C_{17}$ and $C_{20}$ alkanes, which can be used as an important supplement for the petrodiesel-like fuel.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Ahmed, A.S., Khan, S., Hamdan, S., Rahman, M., Islam, M.S. and Maleque, M. (2010), "Biodiesel production from macroalgae as a green fuel for diesel engine", J. Energy Environ., 2(1), 1-5. https://doi.org/10.1201/EBK1420075700-c1
  2. Alfonso, C., Reiner, P. and Wolfram, R.U. (1991), "Extracellular ferricyanide reduction and nitrate reductase activity in the green alga Monoraphidium braunii", Plant Sci., 72(2), 221-228
  3. Atsumi, S., Hanai, T. and Liao, J.C. (2008), "Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels", Nature, 451(7174), 86-89. https://doi.org/10.1038/nature06450
  4. Blumreisinger, M., Meindl, D. and Loos, E. (1983), "Cell wall composition of chlorococcal algae", Phytochemistry, 22(7), 1603-1604. https://doi.org/10.1016/0031-9422(83)80096-X
  5. Bridgwater, A., Meier, D. and Radlein, D. (1999), "An overview of fast pyrolysis of biomass", Org. Geochem., 30(12), 1479-1493. https://doi.org/10.1016/S0146-6380(99)00120-5
  6. Buisson, D., Body, D., Dougherty, G., Eyres, L. and Vlieg, P. (1982), "Oil from deep water fish species as a substitute for sperm whale and jojoba oils", J. Am. Oil Chem. Soc., 59(9), 390-395. https://doi.org/10.1007/BF02636050
  7. Carter, H.E., Rothfus, J. and Gigg, R. (1961), "Biochemistry of the sphingolipids: XII. conversion of cerebrosides to ceramides and sphingosine; structure of Gaucher cerebroside", J. Lipid Res., 2(3), 228-234.
  8. Donk, E. and Hessen, D.O. (1993), "Grazing resistance in nutrient-stressed phytoplankton", Oecologia, 93(4), 508-511. https://doi.org/10.1007/BF00328958
  9. Garcia-Fernandez, J.M., Lopez-Ruiz, A., Toribio, F., Roldan, J.M. and Diez, J. "Occurrence of only one form of glutamine synthetase in the green alga monoraphidium braunii", Plant Physiol., 104(2), 425-430.
  10. Gerloff, G. and Krombholz, P. (1966), "Tissue analysis as a measure of nutrient availability for the growth of angiosperm aquatic plants", Limnol. Oceanogr., 109(4), 529-537.
  11. Hansley, V. (1947), "Sodium reduction of fatty acid esters", J. Ind. Eng. Chem., 39(1), 55-62. https://doi.org/10.1021/ie50445a022
  12. Impellizzeri, G., Mangiafico, S., Piattelli, M., Sciuto, S., Fattorusso, E., Magno, S., Santacroce, C. and Sica, D. (1975), "Amino acids and low-molecular-weight carbohydrates of some marine red algae", Phytochemistry, 14(7), 1549-1557. https://doi.org/10.1016/0031-9422(75)85349-0
  13. Iriki, Y. and Miwa, T. (1960), "Chemical nature of the cell wall of the green algae, Codium, Acetabularia and Halicoryne", Nature, 185, 178-179. https://doi.org/10.1038/185178a0
  14. Jorquera, O., Kiperstok, A., Sales, E.A., Embiruçu, M. and Ghirardi, M.L. (2010), "Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors", Bioresource Technol., 101(4), 1406-1413. https://doi.org/10.1016/j.biortech.2009.09.038
  15. Knothe, G. (2010), "Biodiesel and renewable diesel: a comparison", Prog. Energ. Combust., 36(3), 364-373. https://doi.org/10.1016/j.pecs.2009.11.004
  16. Kokinos, J.P., Eglinton, T.I., Goņi, M.A., Boon, J.J., Martoglio, P.A. and Anderson, D.M. (1998), "Characterization of a highly resistant biomacromolecular material in the cell wall of a marine dinoflagellate resting cyst", Org. Geochem., 28(5), 265-288. https://doi.org/10.1016/S0146-6380(97)00134-4
  17. Kratz, W.A. and Myers, J. (1955), "Nutrition and growth of several blue-green algae", Am. J. Bot., 45(3), 282-287.
  18. Krohn, B.J., McNeff, C.V., Yan, B. and Nowlan, D. (2011), "Production of algae-based biodiesel using the continuous catalytic Mcgyan(R) process", Bioresource Technol., 102(1), 94-100. https://doi.org/10.1016/j.biortech.2010.05.035
  19. Leathers, J., Celina, M., Chianelli, R., Thoma, S. and Gupta, V. (2007), Systems analysis and futuristic designs of advanced biofuel factory concepts, Sandia National Laboratories.
  20. Marlowe, I., Brassell, S., Eglinton, G. and Green, J. (1984), "Long chain unsaturated ketones and esters in living algae and marine sediments", Org. Geochem., 6, 135-141. https://doi.org/10.1016/0146-6380(84)90034-2
  21. Metzger, J. and Bornscheuer, U. (2006), "Lipids as renewable resources: current state of chemical and biotechnological conversion and diversification", Appl. Microbiol. Biot., 71(1), 13-22. https://doi.org/10.1007/s00253-006-0335-4
  22. Mullen, C.A., Strahan, G.D. and Boateng, A.A. (2009), "Characterization of various fast-pyrolysis bio-oils by NMR spectroscopy", Energ. Fuel., 23(5), 2707-2718. https://doi.org/10.1021/ef801048b
  23. Piorreck, M., Baasch, K.H. and Pohl, P. (1984), "Biomass production, total protein, chlorophylls, lipids and fatty acids of freshwater green and blue-green algae under different nitrogen regimes", Phytochemistry, 23(2), 207-216. https://doi.org/10.1016/S0031-9422(00)80304-0
  24. Rantamaki, A.H., Telenius, J., Koivuniemi, A., Vattulainen, I. and Holopainen, J.M. (2011), "Lessons from the biophysics of interfaces: lung surfactant and tear fluid", Prog. Retin. Eye Res., 30(3), 204-215. https://doi.org/10.1016/j.preteyeres.2011.02.002
  25. Rowland, O. and Domergue, F. (2012), "Plant fatty acyl reductases: enzymes generating fatty alcohols for protective layers with potential for industrial applications", Plant Sci., 193-194, 28-38 https://doi.org/10.1016/j.plantsci.2012.05.002
  26. Ryther, J.H. (1959), "Potential Productivity of the Sea: organic production by marine plankton algae is comparable to agricultural yields on land", Science, 130(3376), 602. https://doi.org/10.1126/science.130.3376.602
  27. Savic, S., Weber, C., Tamburic, S., Savic, M. and Müller-Goymann, C. (2008), "Topical vehicles based on natural surfactant/fatty alcohols mixed emulsifier: the influence of two polyols on the colloidal structure and in vitro/in vivo skin performance", J. Pharm. Sci.-US, 98(6), 2073-2090.
  28. Scott, S.A., Davey, M.P., Dennis, J.S., Horst, I., Howe, C.J., Lea-Smith, D.J. and Smith, A.G. (2010), "Biodiesel from algae: challenges and prospects", Curr. Opin. Biotech., 21(3), 277-286. https://doi.org/10.1016/j.copbio.2010.03.005
  29. Simacek, P., Kubicka, D., Kubickova, I., Homola, F., Pospisil, M. and Chudoba, J. (2011), "Premium quality renewable diesel fuel by hydroprocessing of sunflower oil", Fuel, 90(7), 2473-2479. https://doi.org/10.1016/j.fuel.2011.03.013
  30. Singh, J. and Gu, S. (2010), "Commercialization potential of microalgae for biofuels production", Renew. Sust. Energ. Rev., 14(9), 2596-2610. https://doi.org/10.1016/j.rser.2010.06.014
  31. Torres-Duran, P., Miranda-Zamora, R., Paredes-Carbajal, M., Mascher, D., Ble-Castillo, J., Diaz-Zagoya, J. and Juarez-Oropeza, M. (1999), "Studies on the preventive effect of Spirulina maxima on fatty liver development induced by carbon tetrachloride in the rat", J. Ethnopharmacol., 64(2), 141-147. https://doi.org/10.1016/S0378-8741(98)00120-2
  32. Vardon, D.R., Sharma, B., Scott, J., Yu, G., Wang, Z., Schideman, L., Zhang, Y. and Strathmann, TJ. (2011) "Chemical properties of biocrude oil from the hydrothermal liquefaction of Spirulina algae, swine manure, and digested anaerobic sludge", Bioresource Technol., 102(17), 8295-8303. https://doi.org/10.1016/j.biortech.2011.06.041
  33. Vijayaraghavan, K. and Hemanathan, K. (2009), "Biodiesel production from freshwater algae", Energ. Fuel., 23(11), 5448-5453. https://doi.org/10.1021/ef9006033
  34. Vogel, H.H., Rath, H.P., Jakob, C.P. and Oppenlaender, K. (1991), Motor fuel for internal combustion engines, Google Patents.
  35. Wang, L., Li, Y., Chen, P., Min, M., Chen, Y., Zhu, J. and Ruan, R.R. (2010), "Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp.", Bioresource Technol., 101(8), 2623-2628. https://doi.org/10.1016/j.biortech.2009.10.062
  36. Zheng, Y.N., Li, L.L., Liu, Q., Yang, J.M., Wang, X.W., Liu, W., Xu, X., Liu, H., Zhao, G. and Xian, M. (2012), "Optimization of fatty alcohol biosynthesis pathway for selectively enhanced production of $C_{12/14}$ and $C_{16/18}$ fatty alcohols in engineered Escherichia coli", Microbial Cell Factories, 11(1), 65. https://doi.org/10.1186/1475-2859-11-65
  37. Ziegler, K. (1966), Polymerization of ethylene, Google Patents.

Cited by

  1. MALDI-TOF MS based discrimination of coccoid green microalgae (Selenastraceae, Chlorophyta) vol.28, 2017, https://doi.org/10.1016/j.algal.2017.10.015