DOI QR코드

DOI QR Code

A Case Report on the Constructed Wetland for the Growth of Sphagnum palustre

물이끼(Sphagnum palustre) 생육이 가능한 인공습지 사례보고

  • Hong, Mun Gi (Dept. of Biology Education, Seoul National University) ;
  • Kim, Jae Geun (Dept. of Biology Education, Seoul National University)
  • Received : 2013.11.16
  • Accepted : 2013.12.10
  • Published : 2013.12.31

Abstract

Construction of an artificial wetland for the growth of Sphagnum palustre with emergent macrophytes (Phragmites australis, Typha angustifolia, and Zizania latifolia) was firstly tried and the growth of those plant components according to various environmental combinations has been monitored for three years. Above-ground dry weight of Z. latifolia ($1,500g/m^2$) was higher than T. angustifolia ($900g/m^2$) and P. australis ($500g/m^2$) under most environmental conditions. In overall, planted emergent macrophytes seemed to prefer polishing sand without moss peat as a substrate and relatively deep water-depth condition (20cm) rather than shallow water-depth (5cm). Despite of high calcium content in inflow water (> 15ppm) into the constructed wetland, S. palustre populations have survived in most experimental plots during the monitoring period. Substrate layer including moss peat with high surface-area might play a role as an ion-filter. After three years, relatively thicker litter-layer in Z. latifolia plots due to vigorous growth appeared to heavily depress S. palustre by physical compressing and complete shading processes. Most of all, for the continuous growth of S. palustre, physio-chemical characteristics of water and substrate must be carefully managed. In addition, companion emergent species should be also cautiously selected not to depress S. palustre by much litter production. We suggest P. australis and T. angustifolia as companion species rather than Z. latifolia.

Keywords

References

  1. Allen, S. E..Grimshaw, H. M..Parkinson, J. A. and Quarmby, C. 1974. Chemical analysis of ecological materials. Blackwell scientific publication, Oxford.
  2. Andrus, R. E..Karlin, E. F. and Talbot, S. S. 1992. Rare and endangered Sphagnum species in North America. Biol. Conserv. 59(2-3):247-254. https://doi.org/10.1016/0006-3207(92)90592-B
  3. Bae, J. J..Choo, Y. S. and Song, S. D. 2003. The patterns of inorganic cations, nitrogen and phosphorus of plants in Moojechi moor on Mt. Jeongjok. J. Ecol. Field Biol. 26(3):109-114. (in Korean with English summary)
  4. Boyle, J. 2004. A comparison of two methods for estimating the organic matter content of sediments. J. Paleolimnol. 31(1):125-127. https://doi.org/10.1023/B:JOPL.0000013354.67645.df
  5. Bray, R. H. and Kurtz, L. T. 1945. Determination of total, organic and extracted forms of phosphorus in soil. Soil Science 59:39-45. https://doi.org/10.1097/00010694-194501000-00006
  6. Breeuwer, A..Heijmans, M. M. P. D..Robroek, B. J. M. and Berendse, F. 2008. The effect of temperature on growth and competition between Sphagnum species. Oecologia 156 (1):155-167. https://doi.org/10.1007/s00442-008-0963-8
  7. Cho, K-H. and Kim, J-H. 1994. Comparison of shoot growth in the populations of Zizania latifolia along water depth. Korean J. Ecol. 17 (1):59-67. (in Korean with English summary)
  8. Choe, D. M. 1989. Overview of research in Korean Sphagnum spp. Kongju National Teachers College, Rep. Sci. Edu. 21(4):55-81. (in Korean with English summary)
  9. Clymo, R. S. and Hayward, P. M. 1982. The ecology of Sphagnum. In:Bryophyte Ecology, (ed. A. J. E. Smith). Chapman & Hall, London.
  10. Gignac, L. D. and Vitt, D. H. 1990. Habitat limitations of Sphagnum along climatic, chemical, and physical gradients in mires of Western Canada. Bryologist 93(1):7-22. https://doi.org/10.2307/3243541
  11. Gorham, E. 1991. Northern peatlands:role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1(2):182-195. https://doi.org/10.2307/1941811
  12. Graneli, W. 1989. Influence of standing litter on shoot production in reed, Phragmites australis (Cav.) Trin. ex Steudel. Aquat. Bot. 35(1):99-109. https://doi.org/10.1016/0304-3770(89)90070-3
  13. Gunnarsson, U. and Rydin, H. 2000. Nitrogen fertilization reduces Sphagnum production in bog communities. New Phytol. 147(3):527-537. https://doi.org/10.1046/j.1469-8137.2000.00717.x
  14. Gunnarsson, U..Hassel, K. and Soderstrom, L. 2005. Genetic structure of the endangered peat moss Sphagnum angermacinum in Sweden:a result of historic or contemporary process?. Bryologist 108(2):194-203. https://doi.org/10.1639/0007-2745(2005)108[0194:GSOTEP]2.0.CO;2
  15. Hong, M-G. and Kim, J. G. 2012. Growth characteristics of cutting culms sectioned at different positions from three reed population. J. Korean Env. Restor. Tech. 15(1):53-62. (in Korean with English summary) https://doi.org/10.13087/kosert.2012.15.1.053
  16. Hong, M-G. and Kim, J. G. 2013. Inhabitation characteristics of Sphagnum palustre in abandoned paddy terrace wetland:a case report in Ansan. J. Wetlands Res. 15(1):71-78. (in Korean with English summary) https://doi.org/10.17663/JWR.2013.15.1.071
  17. Inoue, T. M. and Tsuchiya, T. 2006. Growth strategy of an emergent macrophyte, Typha orientalis Presl, in comparison with Typha latifolia and Typha angustifolia L.. Limnology 7(3):171-174. https://doi.org/10.1007/s10201-006-0178-9
  18. Inoue, T. M. and Tsuchiya, T. 2008. Interspecific differences in radial oxygen loss from the roots of three Typha species. Limnology 9(3):207-211. https://doi.org/10.1007/s10201-008-0253-5
  19. Kamphake, L. J..Hannah, S. A. and Cohen, J. M. 1967. Automated analysis for nitrate by hydrazine reduction. Water Res. 1(3):205-216. https://doi.org/10.1016/0043-1354(67)90011-5
  20. Kang, S. J. 1970. Ecological studies of the raised bog in the Dae -am mountain adjacent to DMZ in Korea (2)- relation between vegetation and peat. J. Plant Biol. 13(3):20-24. (in Korean with English summary)
  21. Kang, S. J. and Yoshioka, T. 2005. Environmental change of high moor in Mt. Dae-Am of Korean peninsula. Korean J. Limnol. 38(1):45-53.
  22. Karlin, E. F. and Andrus, R. E. 1988. The Sphagnum species of New Jersey. B. Torrey Bot. Club 115(3):168-195. https://doi.org/10.2307/2995954
  23. Kim, J. G..Park, J. H..Choi, B. J..Shim, J. H.. Kwon, G. J..Lee, B. A..Lee, Y. W. and Ju, E. J. 2004. Method in Ecology. Bomoondang, Seoul. (in Korean)
  24. Kim, D. H..Kim, H. T. and Kim, J. G. 2013. Effects of water level and soil type on the survival and growth of Persicaria thunbergii during early growth stages. Ecol. Eng. 61:90-93. https://doi.org/10.1016/j.ecoleng.2013.09.022
  25. Kim, J. G. 2009. Ecological characteristics of Sphagnum fens in Mt. Odae:I. Sowhangbyungsan-neup. J. Korean Wetlands Soc. 11(1):15-27. (in Korean with English summary)
  26. Kim, Y. K. 2008. Development and its assessment of construction method of Sphagnum wetland for landscape use:with focus on planting base, planting method, and nitrogen treatments. PhD Dissertation. Seoul National University, Seoul, Republic of Korea.
  27. Lee, G-M. and Kim, J. G. 2011. Effects of habitat substrates on growth of Menyanthes trifoliata. J. Korean Wetlands Soc. 13(2):355-362. (in Korean with English summary)
  28. Lee, G-M. and Kim, J. G. 2011. Effects of habitat substrates and companion species on the growth of Menyanthes trifoliata. J. Korean Wetlands Soc. 13(3):613-621. (in Korean with English summary)
  29. Mallik, A. U. and Wein, R. W. 1986. Response of a Typha marsh community to draining, flooding, and seasonal burning. Canadian J. Bot. 64(9):2136-2143. https://doi.org/10.1139/b86-282
  30. Paik, W. K. 2010. Vegetation of wetland in Mueuido (Incheon-city). Korean J. Plant Resour. 23(2):197-205. (in Korean with English summary)
  31. Park, J. and Kim, J. G. 2012. Ecological characteristics of Sphagnum fens in Mt. Odae:II. Conservation area of Jilmoe-neup. J. Wetlands Res. 14(1):101-120. (in Korean with English summary)
  32. Park, J..Hong, M-G. and Kim, J. G. 2013. Relationship between early development of plant community and environmental condition in abandoned paddy terraces at mountainous valleys in Korea. J. Ecol. Environ. 36(2):131-140. https://doi.org/10.5141/ecoenv.2013.017
  33. Rochefort, L. 2000. Sphagnum - a keystone genus in habitat restoration. Bryologist 103(3):503-508. https://doi.org/10.1639/0007-2745(2000)103[0503:SAKGIH]2.0.CO;2
  34. Rydin, H. and Jeglum, J. K. 2009. The biology of peatlands. Oxford university press.
  35. Sharma, A..Bargalis, K. and Pande, N. 2009. The allelopathic potential of bryophyte extract on seed germination and seedling growth of Bidens biternata. Nature Science 7(6):30-38.
  36. Spatt, P. D. and Miller, M. C. 1981. Growth conditions and vitality of Sphagnum in a tundra community along the Alaska pipeline Haul road. Arctic 34(1):48-54.
  37. Yabe, K. and Uemura, S. 2001. Variation in size and shape of Sphagnum hummocks in relation to climatic conditions in Hokkaido island, northern Japan. Canadian J. Bot. 79(11):1318-1326.

Cited by

  1. Vegetation and Water Characteristics of an Eco-technological Water Purifying Biotope in Yongin vol.20, pp.4, 2018, https://doi.org/10.17663/jwr.2018.20.4.432