DOI QR코드

DOI QR Code

Soil Temperature Variations in Intertidal Sediments in Geunso Bay and Seonyu Island, West Coast of Korea

서해 근소만-선유도 갯벌 퇴적층의 지온변화에 관한 연구

  • Song, Kyu-Min (Marine Environments & Conservation Research Division, KIOST)
  • 송규민 (한국해양과학기술원 해양환경.보전연구부)
  • Received : 2013.10.30
  • Accepted : 2013.11.25
  • Published : 2013.12.30

Abstract

The vertical structure of sediment temperatures in the tidal flats of Geunso Bay and Seonyu Island in western Korea were measured for more than a year and analyzed. Mean temperature decreased with depth in spring and summer. On the contrary, it increased with depth in fall and winter, faithfully reflecting the seasonal variation resulting from the heating and cooling of the surface sediment. The surface sediment temperatures are shown to be strongly dependent on solar radiation, M2, and M4 tidal components. They are also weakly affected by precipitation. Thermal diffusivity of sediment is estimated at each depth and in each of the four seasons by applying the amplitude equation method. In Geunso Bay, the estimated seasonal-mean values decreased with depth, while they showed little change in Seonyu Island. Depth-averaged thermal diffusivity in Geunso Bay ($1.94 {\times}10^{-7}m^2/s$) was smaller than Seonyu Island ($2.20 {\times}10^{-7}m^2/s$). The variability of thermal diffusivity is shown to corelate with sediment composition and sorting from the grain-size analysis of intertidal sediments in Geunso Bay and Seonyu-do.

Keywords

References

  1. 김동선, 김경희 (2008a) 서해 근소만에서 영양염의 조석 및 계절 변화. Ocean and Polar Res 30(1):1-10 https://doi.org/10.4217/OPR.2008.30.1.001
  2. 김경희, 김동선 (2008b) 서해 근소만 갯벌에서 영양염 플럭스의 계절 변화. Ocean and Polar Res 30(3):225-238 https://doi.org/10.4217/OPR.2008.30.3.225
  3. 나정열, 유승협, 서장원 (2000) 서해 제부도 해역의 간조시 갯벌 퇴적층내 지온 및 열수지의 계절변화. 한국해양학회지 바다 5(1):1-9
  4. 이상호, 조양기, 유광우, 김영곤, 최현용 (2005) 서해만 곰소만 갯벌 온도의 구조 및 변화. 한국해양학회지 바다 10(1):100-112
  5. 최용석 (2002) 서해안 조간대 (태안) 표층 퇴적층의 사계절 온도 변화에 관한 연구. 이학박사 학위논문, 서울대학교, 95 p
  6. 국토해양부 (2007) 새만금 해양환경보전대책을 위한 조사연구(2단계 2차년도)-방조제 외해역 해저환경 이용. 한국해양연구원, BSPM 45704-1959-1, 425 p
  7. Abu-Hamdehm NH (2003) Thermal properties of soils as affected by density and water content. Biosyst Eng 86(1):97-102 https://doi.org/10.1016/S1537-5110(03)00112-0
  8. Alongi DM, Tirendi F, Dixon P, Trott LA, Brunskill GJ (1999) Mineralization of organic matter in intertidal sediments of a tropical semi-closed delta. Estuar Coast Shelf Sci 48:451-467 https://doi.org/10.1006/ecss.1998.0465
  9. Callender E, Hammond DE (1982) Nutrient exchange across the sediment-water interface in the Potomac River estuary. Estuar Coast Shelf Sci 15:395-413 https://doi.org/10.1016/0272-7714(82)90050-6
  10. Folk RL, Ward WC (1957) Vrazos River bar. A study in the significance of grain size parameters. J Sediment Res 27:3-26 https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  11. Guarini JM, Blanchard G, Gros P, Harrison SJ (1997) Modeling the mud surface temperature on intertidal flats to investigate the spatio-temporal dynamics of the benthic microalgal photosynthetic capacity. Mar Ecol Prog Ser 153:25-36 https://doi.org/10.3354/meps153025
  12. Harrison SJ, Phizacklea AP (1985) Seasonal change in heat flux and heat storage in the intertidal mud-flats of the forth estuary. Int J Climatol 5(5):473-485 https://doi.org/10.1002/joc.3370050502
  13. Harrison SJ (1985) Heat exchange in muddy intertidal sediments: Chichester harbour, West Sussex, England. Estuar Coast Shelf Sci 20:477-490 https://doi.org/10.1016/0272-7714(85)90090-3
  14. Harrison SJ, Phizacklea AP (1987a) Temperature fluctuation in muddy intertidal sediments, Forth Estuary, Scotland. Estuar Coast Shelf Sci 24:279-288 https://doi.org/10.1016/0272-7714(87)90070-9
  15. Harrison SJ, Phizacklea AP (1987b) Vertical temperature gradients in muddy intertidal sediments in the Forth estuary. Limnol Oceanogr 32:954-963 https://doi.org/10.4319/lo.1987.32.4.0954
  16. Harrison SJ, Morrison P (1993) Temperatures in a sandy beach under strong solar heating: Patara Beach, Turkey. Estuar Coast Shelf Sci 37(1):89-97 https://doi.org/10.1006/ecss.1993.1043
  17. Johnson RG (1965) Temperature variations in the infaunal environments of a sand flat. Limnol Oceanogr 10:114-120 https://doi.org/10.4319/lo.1965.10.1.0114
  18. Meller GL, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Ge 20(4):851-875 https://doi.org/10.1029/RG020i004p00851
  19. Mellor GG (1996) Users guide for a three-dimensional, primitive equation, Numerical Ocean Model. Princeton University, Princeton, 40 p
  20. Montheith JL (1973) Principles of environmental physics. Elsevier, New York, 241 p
  21. Oke TR (1978) Boundary layer climates. Methuen & Co. Ltd., London, 372 p
  22. Piccolo MC, Perillo GME, Daborn GR (1993) Soil temperature variations on a Tidal Flat in Minas Basin, Bay of Fundy, Canada. Estuarine Coastal Shelf Sci 35:345-357
  23. Sakamaki T, Nishimura O, Sudo R (2006) Tidal time-scale variation in nutrient flux across the sediment-water interface of an estuarine tidal flat. Estuar Coast Shelf Sci 67:653-663 https://doi.org/10.1016/j.ecss.2006.01.005
  24. Smagorinsky J (1963) General circulation experiments with the primitive equation, I. The basic experiment. Mon Weather Rev 91:99-164 https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  25. Swinbanks DD, Murray JW (1981) Biosedimentological zonation of Boundary Bay tidal flats, Fraser River Delta, British Columbia. Sedimentology 28:201-237 https://doi.org/10.1111/j.1365-3091.1981.tb01677.x
  26. Vugts, HF, Zimmerman JTF (1985) The Heat balance of a tidal flat area. Neth J Sea Res 19(1):1-14 https://doi.org/10.1016/0077-7579(85)90037-7