DOI QR코드

DOI QR Code

Fungicidal Effect of Slightly Acidic Hypochlorous Water against Phytopathogenic Fungi

미산성 차아염소산수의 식물병원균류에 대한 살균 효과

  • 송정영 (충남대학교 응용생물학과) ;
  • 김나래 (충남대학교 응용생물학과) ;
  • 남명현 (충남농업기술원 논산딸기시험장) ;
  • 박범진 (한국코스믹라운드(주)) ;
  • 황의일 ((주)케이티엔지 R&D본부 기술연구소) ;
  • 최종명 (충남대학교 원예학과) ;
  • 김홍기 (충남대학교 응용생물학과)
  • Received : 2013.11.15
  • Accepted : 2013.12.14
  • Published : 2013.12.30

Abstract

Slightly acidic hypochlorous water (SAHW) is well known for having a powerful and broad spectrum antimicrobial activity, and is harmless to the environment and humans. SAHW (pH 5~6.5, 20~30 ppm available chlorine concentration) was generated by electrolysis of dilute solution of HCl (4%) in a chamber of a non-membrane electrolytic cell. Our objective was to determine SAHW has a potential fungicidal activity on some phytopathogenic fungi. Spores of Botrytis cinerea, Colletotrichum acutatum and Phytophthora capsici were not culturable on agar media at approximately 10 seconds after treatment by SAHW. However, inactivation of Penicillium hirsutum was required over 3 min. Dilution of SAHW with sterilized distilled water (SDW) at the ratio of 1:1 (SAHW:SDW) against C. acutatum showed 100% inactivation but, the efficacy in 1:2 decreased until 63.2%. Control value of SAHW was 70.4% against C. acutatum on pepper fruits when applied upto 24 h postinoculation. SAHW has a powerful and wide spectrum antifungal activity and could be applied as a potential alternative to fungicidal agent for control of plant disease.

미산성 차아염소산수는 다양한 종류의 미생물들에 대해 강력한 살균력을 나타내지만 인간과 자연에 무해한 살균제로 잘 알려져 있다. 4%의 희석된 염산만으로 무격막 전해조에서 전기분해를 통해 만들어졌으며 유효염소 농도가 20~30 ppm(HOCl 97%)이고 pH 5.0~6.5인 미산성 차아염소산수의 식물병원균들에 대한 살균효과를 조사하였다. Botrytis cinerea, Colletotrichum acutatum, Phytophthora capsici 등의 포자들에 대해서는 대략 10초 정도의 처리시간으로도 100% 살균효과가 나타났으나 Penicillium hirsutum의 경우는 3분 이상의 처리시간이 요구되었다. 희석농도에 따른 C. acutatum에 대한 살균효과를 조사한 결과 1:1(미산성 차아염소산수:멸균수)의 비율로 희석한 처리구에서는 포자발아가 100% 억제되었으나 1:2 처리구에서는 63%로 억제율이 낮아졌다. 고추탄저병균 C. acutatum을 고추열매에 접종한 후 24시간이 지나서 처리된 미산성 차아염소산수의 병방제 효과를 조사한 결과 방제가는 70.4%였다. 본 연구를 통해 미산성 차아염소산수의 강하고 광범위한 살균력이 확인되었으며 식물병 방제를 위한 살균제로 유용하게 활용될 수 있을 것으로 예상됐다.

Keywords

References

  1. Al-Haq, M. I., Seo, Y., Oshita, S. and Kawagoe, Y. 2001. Fungicidal effectiveness of electrolyzed oxidizing water on postharvest brown rot of peach. Hort. Sci. 36:1310.
  2. Al-Haq, M. I., Seo, Y., Oshita., S. and Kawagoe, Y. 2002. Disinfection effects of electrolyzed oxidizing water on suppressing fruit rot of pear caused by Botryosphaeria berengeriana. Food Res. Inter. 35:657-664. https://doi.org/10.1016/S0963-9969(01)00169-7
  3. Al-Haq, M. I., Sugiyama, J. and Isobe, S. 2005. Applications of electrolyzed water in agriculture & food industries. Food Sci. Technol. Res. 19:135-150.
  4. Buck, J. W., van Iersel, M. W., Oetting, R. D. and Hung, Y. C. 2002. In vitro fungicidal activity of acidic electrolyzed oxidizing water. Plant Dis. 86:278-281. https://doi.org/10.1094/PDIS.2002.86.3.278
  5. Buck, J. W., van Iersel, M. W., Oetting, R. D. and Hung, Y. C. 2003. Evaluation of acidic electrolyzed water for phytotoxic symptoms on foliage and flowers of bedding plants. Crop Prot. 22:73-77. https://doi.org/10.1016/S0261-2194(02)00113-8
  6. Copping, L. G. and Duke, S. O. 2007. Natural products that have been used commercially as crop protection agent. Pest Manag. Sci. 63:524-554. https://doi.org/10.1002/ps.1378
  7. Guentzel, J. L., Callan, M. A., Lam, K. L., Emmons, S. A. and Dunham, V. L. 2011. Evaluation of electrolyzed oxidizing water for phytotoxic effects and pre-harvest management of gray mold disease on strawberry plants. Crop Prot. 30:1274-1279. https://doi.org/10.1016/j.cropro.2011.05.021
  8. Hao, J. X., Li, L. T., Ma, Z. H., Cheng, Y. Q., Cai, C. J. and Liu, H. J. 2006. Study on electrolyzed functional water against wheat stripe rust. China Plant Protection 26:21-23. (in Chinese).
  9. Huang, Y. R., Hung, Y. C., Hsu, S. Y., Huang, Y. W. and Hwang. D. F. 2008. Application of electrolyzed water in the food industry. Food Cont. 19:329-345. https://doi.org/10.1016/j.foodcont.2007.08.012
  10. Issa-Zacharia, A., Kamitani, Y., Morita, K. and Iwasaki, K. 2010. Sanitization potency of slightly acidic electrolyzed water against pure cultures of Escherichia coli and Staphylococcus aureus, in comparison with that of other food sanitizers. Food Cont. 21:740-745. https://doi.org/10.1016/j.foodcont.2009.11.002
  11. Jang, K. I., Lee, J. H., Choi, S. G. and Lee, H. B. 2008. Quality of stored grape (Vitis labruscana) treated with electrolyzed acid water humidification, electrolyzed acidic water sterilization and ozon water sterilization. J. Agri. Life Sci. 42:47-57. (in Korean).
  12. Jeong, K. J. and Park, S. G. 2012. Sterilization effect of electrolyzed oxidized water by electrochemical methode. J. Indust. Sci. Technol. 12:119-123. (in Korean).
  13. Kang, K. S., Kim, T. I., Lee, H. I., Han, H. J., Park, S. G., Kim, H. J., Han, S. D., Park, K. Y. and Rhee. Y. W. 2010. Investigation on the technology trend in electrolyzed sterilizing water by the patent analysis. Appl. Chem. Engin. 21: 188-194. (in Korean).
  14. Nimitkeatkai, H. and Kim, J. G. 2009. Washing efficiency of acidic electrolyzed water on microbial reduction and quality of 'Fuji' apples. Kor. J. Hort. Sci. Technol. 27:250-255.
  15. Oh, D. H. 2012. Application and technology trend of slightly acidic low concentration electrolyzed water. Safe Food 7:35-45. (in Korean).
  16. Okamoto, M., Komagata, Y., Okuda, S., Nishimoto, Y., Kamoshida, M., Nakamura, T. and Komiyama, K. 2006. Microbicidal effect of slightly acidic electrolyzed water. J. Antibact. Antifungal Agents 34:3-10. (in Japanese).
  17. Prutz, W. A. 1996. Hypochlorous acid iInteractions with thiols, nucleotides, DNA, and other biological substrates. Arch. Biochem. Biophy. 332:110-120. https://doi.org/10.1006/abbi.1996.0322
  18. Soli, K. W., Motomatsui, A., Yoshizumi, A., Yamakawa, M., Misshima, T., Honjoh, K. I. and Miyamoto T. 2010. Comparison of the bactericidal effect of slightly acidic hypochlorous water with that of conventional sterilizers. J. Fac. Agr. Kyushu Univ. 55:275-280.
  19. Tamaki, M., Kondo, S. and Sakai, Y. 2001. A study on the control of rice disease by electrolyzed water. Environ. Cont. Biol. 39: 85-101. (in Japanese).
  20. Whangchai, K., Saengnil, K., Singkamanee, C. and Uthaibutra, J. 2010. Effect of electrolyzed oxidizing water and continuous ozone exposure on the control of Penicillium digitatum on tangerine cv. 'Sai Nam Pung'during storage. Crop Prot. 29: 386-389. https://doi.org/10.1016/j.cropro.2009.12.024
  21. Wu, L., Xiao, W. H. and Li, L. T. 2004. Test of electrolyzed functional water inhibiting grape anthracnose. Plant Prot. 30:82-83. (in Chinese).
  22. Xiao, W. H., Li, L. T., Wang, H. M. and Li, Z. G. 2003. Report on the electrolyzed functional water against cucumber powdery mildew test. Plant Prot. 29, 50-51. (in Chinese).
  23. Xiong, K., Liu, H., Liu, R. and Li, L. 2010. Differences in fungicidal efficiency against Aspergillus flavus for neutralized and acidic electrolyzed oxidizing waters. Int. J. Food Microbiol. 137:67-75. https://doi.org/10.1016/j.ijfoodmicro.2009.10.032
  24. Zheng, L., Liu, H. J., Hao, J. X., Yang, H. B. and Li, L. T. 2010. Control of tomato leaf mold with electrolyzed functional water in greenhouses. Plant Prot. 36:162-164. (in Chinese).

Cited by

  1. Comparison of Environmental-Friendly and Chemical Spray Calendar for Controlling Diseases and Insect Pests of Strawberry during Nursery Seasons vol.21, pp.4, 2015, https://doi.org/10.5423/RPD.2015.21.4.273