DOI QR코드

DOI QR Code

Application of Bimodal Histogram Method to Oil Spill Detection from a Satellite Synthetic Aperture Radar Image

  • Kim, Tae-Sung (Department of Science Education, Seoul National University) ;
  • Park, Kyung-Ae (Department of Earth Science Education / Research Institute of Oceanography, Seoul National University) ;
  • Lee, Min-Sun (Department of Science Education, Seoul National University) ;
  • Park, Jae-Jin (Department of Science Education, Seoul National University) ;
  • Hong, Sungwook (Satellite Analysis Division, National Meteorological Satellite Center, Korea Meteorological Administration) ;
  • Kim, Kum-Lan (Satellite Analysis Division, National Meteorological Satellite Center, Korea Meteorological Administration) ;
  • Chang, Eunmi (Ziinconsulting Inc.)
  • Received : 2013.12.16
  • Accepted : 2013.12.19
  • Published : 2013.12.31

Abstract

As one of segmentation techniques for Synthetic Aperture Radar (SAR) image with oil spill, we applied a bimodal histogram method to discriminate oil pixels from non-oil pixels. The threshold of each moving window was objectively determined using the two peaks in the histogram distribution of backscattering coefficients from ENVISAT ASAR image. To reduce the effect of wind speed on oil spill detection, we selected ASAR image which satisfied a limit of wind speeds for successful detection. Overall, a commonly used adaptive threshold method has been applied with a subjectively-determined single threshold. In contrast, the bimodal histogram method utilized herein produces a variety of thresholds objectively for each moving window by considering the characteristics of statistical distribution of backscattering coefficients. Comparison between the two methods revealed that the bimodal histogram method exhibited no significant difference in terms of performance when compared to the adaptive threshold method, except for around the edges of dark oil spots. Thus, we anticipate that the objective method based on the bimodality of oil slicks may also be applicable to the detection of oil spills from other SAR imagery.

Keywords

References

  1. Alpers, W. and H. Huhnerfuss, 1989. The damping of ocean waves by surface films: A new look at an old problem, Journal of Geophysical Research, 94: 6251-6265. https://doi.org/10.1029/JC094iC05p06251
  2. Alpers, W.R., D.B. Ross, and C.L. Rufenach, 1981. On the detectability of ocean surface waves by real and synthetic aperture radar, Journal of Geophysical Research, 86(C7): 6481-6498. https://doi.org/10.1029/JC086iC07p06481
  3. Bell, D., C. Menges, W. Ahmad, and J. Van Zyl, 2001. The application of dielectric retrieval algorithms for mapping soil salinity in a tropical coastal environment using airborne polarimetric SAR, Remote Sensing of Environment, 75(3): 375-384. https://doi.org/10.1016/S0034-4257(00)00180-2
  4. Bern, T.-I., T. Wahl, T. Andersson, and R. Olsen, 1992. Oil spill detection using satellite based SAR: Experience from a field experiment, Proc. of 1st ERS-1 Symposium, Cannes, France, Nov. 4-6, pp. 829-834.
  5. Brekke, C. and A. H. Solberg, 2005. Oil spill detection by satellite remote sensing, Remote Sensing of Environment, 95(1): 1-13. https://doi.org/10.1016/j.rse.2004.11.015
  6. Collard, F., F. Ardhuin, and B. Chapron, 2005. Extraction of coastal ocean wave fields from SAR images, IEEE Journal of Oceanic Engineering, 30(3): 526-533. https://doi.org/10.1109/JOE.2005.857503
  7. Demin, B.T., S.A. Ermakov, N.Y. Pelinovsky, T.G. Talipova, and A.I. Sheremet'yeva, 1985. Study of the elastic properties of sea surface-active films, Atmospheric Oceanic Physics, 21: 312-316.
  8. Engen, G. and H. Johnsen, 1995. SAR-ocean wave inversion using image cross spectra, IEEE Transactions on Geoscience and Remote Sensing, 33(4): 1047-1056. https://doi.org/10.1109/36.406690
  9. Gerling, T., 1986. Structure of the surface wind field from the Seasat SAR, Journal of Geophysical Research, 91(C2): 2308-2320. https://doi.org/10.1029/JC091iC02p02308
  10. Graber, H.C., D.R. Thompson, and R.E. Carande, 1996. Ocean surface features and currents measured with synthetic aperture radar interferometry and HF radar, Journal of Geophysical Research, 101(C11): 25813-25832. https://doi.org/10.1029/96JC02241
  11. Hasselmann, K. and S. Hasselmann, 1991. On the nonlinear mapping of an ocean wave spectrum into a synthetic aperture radar image spectrum and its inversion, Journal of Geophysical Research, 96(C6): 10713-10729. https://doi.org/10.1029/91JC00302
  12. Huehnerfuss, H., W. Walter, P.A. Lange, and W. Alpers, 1987. Attenuation of wind waves by monomolecular sea slicks and the Marangoni effect, Journal of Geophysical Research, 92: 3961-3963. https://doi.org/10.1029/JC092iC04p03961
  13. Huehnerfuss, H., W. Alpers, W.D. Garrett, P.A. Lange, and S. Stolte, 1983. Attenuation of capillary and gravity waves at sea by monomolecular organic surface films, Journal of Geophysical Research, 88: 9809-9816. https://doi.org/10.1029/JC088iC14p09809
  14. Kasischke, E.S., D.R. Lyzenga, R.A. Shuchman, and C.C. Wackerman, 1988. Contrast ratios of internal waves in synthetic aperture radar imagery: A comparison of SAR internal wave signature experiment observations with theory, Journal of Geophysical Research, 93(C10): 12355-12369. https://doi.org/10.1029/JC093iC10p12355
  15. Kang, M.K. and H. Lee, 2007. Estimation of ocean current velocity near Incheon using Radarsat-1 SAR and HF-radar data, Korean Journal of Remote Sensing, 23(5): 421-430. https://doi.org/10.7780/kjrs.2007.23.5.421
  16. Kim, D.-J., W.M. Moon, and Y.-S. Kim, 2010. Application of TerraSAR-X data for emergent oil-spill monitoring, IEEE Transactions on Geoscience and Remote Sensing, 48(2): 852-863. https://doi.org/10.1109/TGRS.2009.2036253
  17. Kim, T.S. and K.A. Park, 2011. Estimation of polarization ratio for sea surface wind retrieval from SIR-C SAR Data, Korean Journal of Remote Sensing, 27(6): 729-740. https://doi.org/10.7780/kjrs.2011.27.6.729
  18. Kim, T.S., K.A. Park, W.M. Choi, S. Hong, B.C. Choi, I. Shin, and K.R. Kim, 2012. L-band SAR-derived sea surface wind retrieval off the east coast of Korea and error characteristics, Korean Journal of Remote Sensing, 28(5): 477-487. https://doi.org/10.7780/kjrs.2012.28.5.1
  19. Liao, M., C. Wang, Y. Wang, and L. Jiang, 2008. Using SAR images to detect ships from sea clutter, IEEE Geoscience and Remote Sensing Letters, 5(2): 194-198. https://doi.org/10.1109/LGRS.2008.915593
  20. Litovchenko, K., A. Ivanov, and S. Ermakov, 1999. Detection of oil slicks parameters from ALMAZ-1 and ERS-1 SAR imagery, Proc. of 1999 IEEE International Geoscience and Remote Sensing Symposium(IGARSS'99), Hamburg, Germany, Jun. 28-Jul. 02, vol. 3, pp. 1484-1486.
  21. Liu, A., C. Peng, and Y.-S. Chang, 1996. Mystery ship detected in SAR image, Eos, Transactions American Geophysical Union, 77(3): 17.
  22. Liu, A.K. and M.-K. Hsu, 2004. Internal wave study in the South China Sea using synthetic aperture radar (SAR), International Journal of Remote Sensing, 25(7-8): 1261-1264. https://doi.org/10.1080/01431160310001592148
  23. Lucassen, J., 1982. Effect of surface-active material on the damping of gravity waves: A reappraisal, Journal of Colloid Interface Science, 85: 52-58. https://doi.org/10.1016/0021-9797(82)90234-X
  24. Mason, D., I. Davenport, G. Robinson, R. Flather, and B. McCartney, 1995. Construction of an intertidal digital elevation model by the 'Water-Line' Method, Geophysical Research Letters, 22(23): 3187-3190. https://doi.org/10.1029/95GL03168
  25. Migliaccio, M., F. Nunziata, A. Montuori, X. Li, and W.G. Pichel, 2011. A multifrequency polarimetric SAR processing chain to observe oil fields in the Gulf of Mexico, IEEE Transactions on Geoscience and Remote Sensing, 49(12): 4729-4737. https://doi.org/10.1109/TGRS.2011.2158828
  26. Monaldo, F.M., D.R. Thompson, R.C. Beal, W.G. Pichel, and P. Clemente-Colon, 2001. Comparison of SAR-derived wind speed with model predictions and ocean buoy measurements, IEEE Transactions on Geoscience and Remote Sensing, 39(12): 2587-2600. https://doi.org/10.1109/36.974994
  27. Ouchi, K., S. Tamaki, H. Yaguchi, and M. Iehara, 2004. Ship detection based on coherence images derived from cross correlation of multilook SAR images, IEEE Geoscience and Remote Sensing Letters, 1(3): 184-187. https://doi.org/10.1109/LGRS.2004.827462
  28. Park, S.M., C.S. Yang, and Y.S. Oh, 2010. Numerical simulation of radar backscattering from oil spills on sea surface for L-band SAR, Korean Journal of Remote Sensing, 26(1): 21-27(in Korean with Engilsh abstract). https://doi.org/10.7780/kjrs.2010.26.1.21
  29. Perez-Marrodan, M., 1998. ENVISYS environmental monitoring warning and emergency management system, Proc. of the AFCEA Kiev Seminar, Kiev, Ukraine, May 28-29, pp. 122-132.
  30. Rodenas, J.A. and R. Garello, 1997. Wavelet analysis in SAR ocean image profiles for internal wave detection and wavelength estimation, IEEE Transactions on Geoscience and Remote Sensing, 35(4): 933-945. https://doi.org/10.1109/36.602535
  31. Shemer, L., M. Marom, and D. Markman, 1993. Estimates of currents in the nearshore ocean region using interferometric synthetic aperture radar, Journal of Geophysical Research, 98(C4): 7001-7010. https://doi.org/10.1029/92JC02962
  32. Skoelv, A. and T. Wahl, 1993. Oil spill detection using satellite based SAR, Phase 1B competition report, Technical report, Norwegian Defence Research Establishment, Kjeller, Norway.
  33. Solberg, A.H.S., G. Storvik, R. Solberg, and E. Volden, 1999. Automatic detection of oil spills in ERS SAR images, IEEE Transactions on Geoscience and Remote Sensing, 37(4): 1916-1924. https://doi.org/10.1109/36.774704
  34. Vachon, P.W., S.J. Thomas, J.A. Cranton, C. Bjerkelund, F.W. Dobson, and R.B. Olsen, 1998. Monitoring the coastal zone with the RADARSAT satellite, Oceanology International 98, Brighton, UK, Mar. 10-13, pp. 29-38.
  35. Valenzuela, G.R., 1978. Theories for the interaction of electromagnetic and ocean waves-A review, Boundary-Layer Meteorology, 13: 61-85. https://doi.org/10.1007/BF00913863
  36. Van der Wal, D., P.M.J. Herman, and A. Wielemaker-van den Dool, 2005. Characterisation of surface roughness and sediment texture of intertidal flats using ERS SAR imagery, Remote Sensing of Environment, 98(1): 96-109. https://doi.org/10.1016/j.rse.2005.06.004
  37. Xu, Q., H. Lin, X. Li, J. Zuo, Q. Zheng, W.G. Pichel, and Y. Liu, 2010. Assessment of an analytical model for sea surface wind speed retrieval from spaceborne SAR, International Journal of Remote Sensing, 31(4): 993-1008. https://doi.org/10.1080/01431160902922870
  38. Yang, C.S., D.Y. Kim, and J.H. Oh, 2009. Study on improvement of oil spill prediction using satellite data and oil-spill model: Hebei Spirit oil spill, Korean Journal of Remote Sensing, 25(5): 435-444(in Korean with Engilsh abstract). https://doi.org/10.7780/kjrs.2009.25.5.435
  39. Zhang, B., W. Perrie, X. Li, and W.G. Pichel, 2011. Mapping sea surface oil slicks using RADARSAT-2 quad-polarization SAR image, Geophysical Research Letters, 38(L10602): doi:10.1029/2011GL047013.

Cited by

  1. Evolution of a Canada Basin ice-ocean boundary layer and mixed layer across a developing thermodynamically forced marginal ice zone vol.121, pp.8, 2016, https://doi.org/10.1002/2016JC011778
  2. Detection and Dispersion of Thick and Film-Like Oil Spills in a Coastal Bay Using Satellite Optical Images vol.9, pp.11, 2016, https://doi.org/10.1109/jstars.2016.2577597
  3. The importance of capturing late melt season sea ice conditions for modeling the western Arctic ocean boundary layer vol.7, pp.None, 2013, https://doi.org/10.1525/elementa.391
  4. Oil Spill Mapping from Kompsat-2 High-Resolution Image Using Directional Median Filtering and Artificial Neural Network vol.12, pp.2, 2013, https://doi.org/10.3390/rs12020253
  5. Algorithm to Estimate Oil Spill Area Using Digital Properties of Image vol.34, pp.1, 2020, https://doi.org/10.26748/ksoe.2019.104