DOI QR코드

DOI QR Code

Effects of Climate-Changes on Patterns of Seasonal Changes in Bird Population in Rice Fields using a Prey-Predator Model

포식자-피식자 모델을 이용하여 기후변화가 논습지를 이용하는 조류 개체군 동태에 미치는 영향 예측

  • Lee, Who-Seung (Department of Biological Sciences, Universite du Quebec a Montreal)
  • 이후승 (퀘벡주립대학교 생물학과)
  • Received : 2013.08.28
  • Accepted : 2013.10.24
  • Published : 2013.12.31

Abstract

BACKGROUND: It is well known that rice-fields can provide excellent foraging places for birds including seasonal migrants, wintering, and breeding and hence the high biodiversity of rice-fields may be expected. However, how environmental change including climate-changes on life-history and population dynamics in birds on rice-fields has not been fully understood. In order to investigate how climate-change affects population migratory patterns and migration timing, I modeled a population dynamics of birds in rice-fields over a whole year. METHODS AND RESULTS: I applied the Lotka-Volterra equation to model the population dynamics of birds that have been foraging/visiting rice-fields in Korea. The simple model involves the number of interspecific individuals and temperature, and the model parameters are periodic in time as the biological activities related to the migration, wintering and reproduction are seasonal. As results, firstly there was a positive relationship between the variation of seasonal population sizes and temperature change. Secondly, the reduced lengths of season were negatively related to the population size. Overall, the effects of the difference of lengths of season on seasonal population dynamics were higher than the effects of seasonal temperature change. CONCLUSION(S): Climate change can alter population dynamics of birds in rice-fields and hence the variation may affect the fitness, such as reproduction, survival and migration. The unstable balances of population dynamics in birds using paddy rice field as affected by climate change can reduce the population growth and species diversity in rice fields. The results suggest that the agricultural production is partly affected by the unstable balance of population in birds using rice-fields.

본 연구는 수학적 모델(Lotka-Volterra 방정식)을 이용하여 기후변화가 논습지를 이용하는 조류 개체군의 크기와 구조에 미치는 영향에 대해 분석 및 예측하였다. 특히 논습지를 이용하는 조류 개체군 동태에 영향을 주는 기후변화에 대해, 1) 계절 내 최고 및 최저 기온의 변화와 2) 계절 길이의 변화를 조합하여 11가지 가능한 기후변화시나리오를 모델시뮬레이션에 이용하였다. 본 연구의 수학모델은 기온 변화, 즉 계절이 바뀜에 따라 월동, 이동, 그리고 번식조류가 일정한 시기에 그리고 일정한 분포패턴으로 논습지를 취식 및 서식지로 이용하고 있음을 보였다. 기후변화 시나리오의 결과, 기온변화의 폭이 커질 수록 조류 개체군 동태의 변이는 증가하였으며, 계절의 길이 변화, 특히 계절이 짧아진 경우에 논습지를 이용하는 기간도 크게 짧아져 전체적으로 개체군 동태를 감소시켰다. 전체적으로 한 계절 내의 기온변화가 발생하고, 다른 계절은 평년 기온을 유지할 경우에는, 해당 계절의 조류 개체군 동태만 기온변화에 영향을 받았다. 더욱이 계절의 길이 변화는 계절 내 기온 변화보다 더 뚜렷한 개체군 동태의 변화를 유도하였다.

Keywords

References

  1. Ahmed, N., Garnett, S.T., 2011. Integrated rice-fish farming in Bangladesh: meeting the challenges of food security, Food Sec. 3, 81-92. https://doi.org/10.1007/s12571-011-0113-8
  2. Begon, M., Harper, J.L., Townsend, C.R., 1996. Ecology: individuals, populations and communities, pp. 214-264, Blackwell Science Ltd, Cambridge, MA.
  3. Berg, H., Berg, C., Nguyen, T.T., 2012. Integrated rice-fish farming: safeguarding biodiversity and ecosystem services for sustainable food production in the mekong delta, J. Sustain. Agr. 36, 859-872. https://doi.org/10.1080/10440046.2012.712090
  4. Both, C., Bouwhuis, S., Lessells, C.M., Visser, M.E., 2006. Climate chagne and population declines in a long-distnace migratory bird, Nature 441, 81-83. https://doi.org/10.1038/nature04539
  5. Clark, J.S., Bell, D.M., Kwit, M., Stine, A., Vierra, B., Zhu, K., 2012. Individual-scale inference to anticipate climate-change vulnerability of biodiverity, Philos. T. Roy. Soc. B 367, 236-247. https://doi.org/10.1098/rstb.2011.0183
  6. Elphick, C.S., 2010. Why study birds in rice fields? Waterbirds 33, 1-7.
  7. Fasola, M., Ruiz, M., 1996. The value of rice fields as substitutes for natural wetlands for waterbirds in the Mediterrnean region, Colon. Waterbird. 19, 122-128. https://doi.org/10.2307/1521955
  8. Fraser, K.C., Silverio, C., Kramer, P., Mickle, N., Aeppli, R., Stutchbury, B.J.M., 2013. A trans-hemispheric migratory songbird does not advance spring schedules or increase migration rate in response to record-setting temperatures at breeding sites, PLoS One 8, e64587. https://doi.org/10.1371/journal.pone.0064587
  9. Fujioka, M., Armacost Jr, J.W., Yoshida, H., Maeda, T., 2001. Value of fallow farmlands as summer habitats for waterbirds in a Japanese rural area, Ecol. Res. 16, 555-567. https://doi.org/10.1046/j.1440-1703.2001.00417.x
  10. Graham, L.K., Yoon, T., Kim, J.J., 2010. Stress impairs optimal behavior in a water foraging choice task in rats. Learn Mem., 17, 1-4. https://doi.org/10.1101/lm.1605510
  11. Groothuis, T.G.G., Carere, C., Lipar, J., Drent, P.J., Schwabl, H., 2008. Selection on personality in a songbird affects maternal hormone levels tuned to its effect on timing of reproduction, Biol. Lett. 4, 465-467. https://doi.org/10.1098/rsbl.2008.0258
  12. Haussmann, M.F., Longenecker, A.S., Marchetto, N.M., Juliano, S.A., Bowden, R.M., 2012. Embryonic exposure to corticosterone modifies the juvenile stress response, oxidative stress and telomere length, Proc. Biol. Sci. B 279, 1447-1456. https://doi.org/10.1098/rspb.2011.1913
  13. Horie, T., Nakagawa, H., Nakano, J., Hamotani, K., Kim, H.Y., 1995. Temperature gradient chambers for research on global environment change. III. A system designed for rice in Kyoto, Japan, Plant. Cell Environ. 18, 1064-1069. https://doi.org/10.1111/j.1365-3040.1995.tb00618.x
  14. Hossain, S.T., Sugimoto, H., Ahmed, G.J.U., Islam, M.R., 1992. Effect of integrated rice-duck farming on rice yield, farm productivity, and rice-provisioning ability of farmers,. Asian J. Agr. Dev. 2: 79-86.
  15. Huffaker, C.B., 1958. Experimental studies on predation: dispersion factors and predator-prey oscillations, Hilgradia 27, 343-383. https://doi.org/10.3733/hilg.v27n14p343
  16. Jonzen, N., Hedenström, A., Lundberg, P., 2007. Climate change and the optimal arrival of migratory birds, Proc. Biol. Sci. B 274, 269-274. https://doi.org/10.1098/rspb.2006.3719
  17. Kim, M., Nam, H.-K., Kim, M.-H., Cho, K.-J., Kang, K.-K., Na, Y.-E., 2013. Status of birds using a rice paddy in south korea, Korean J. Environ. Agric. 32, 155-165. https://doi.org/10.5338/KJEA.2013.32.2.155
  18. Kitaysky, A.S., Kitaiskaia, E.V., Piatt, J.F., Wingfield, J.C., 2003. Benefits and costs of increased levels of corticosterone in seabird chicks, Horm. Behav. 43, 140-149. https://doi.org/10.1016/S0018-506X(02)00030-2
  19. Lack, D., 1968. Ecological adaptations for breeding in birds, pp. 1-34. Methuen, London.
  20. Lee, W.-S. 2012a. Effect of environmental stressors in stopover sites on the survival and re-migration using a dynamic-state-dependent model, Kor. J. Orni. 19, 277-291.
  21. Lee, W.-S. 2012b. Climate change and individual life history,. Ocean and Polar Res. 34, 275-286. https://doi.org/10.4217/OPR.2012.34.3.275
  22. Lee, W.-S. 2013. Effects of climate and human aquatic activity on early life-history traits in fish, Kor. J. Ecol. Envion. 46, 395-408. https://doi.org/10.11614/KSL.2013.46.3.395
  23. Lemoine, N., Boning-Gaese, K., 2003. Potential impact of global climate change on species richness of long-distance migrants, Conserv. Biol. 17, 577-586. https://doi.org/10.1046/j.1523-1739.2003.01389.x
  24. Liu, Z., Zhong, S., Teng, Z. 2012. N species impulsive migration model with markovian switching,. J. Theor. Biol. 307, 62-69. https://doi.org/10.1016/j.jtbi.2012.05.001
  25. Love, O.P., Williams, T.D., 2008. The adaptive value of stress-induced phenotypes: effects of maternally derived corticosterone on sex-biased investment, cost of reproduction, and maternal fitness, Am. Nat. 172, E135-149. https://doi.org/10.1086/588063
  26. Lumpkin, H.A., Pearson, S.M., In Press. Effects of exurban development and temperature on bird species in the Southern appalachians, Conserv. Biol.
  27. Matheworks, T., 2012 Matlab 2012b. Matheworks, Natick, MA.
  28. Mearns, L.O., Hulme, M., Carter, T.R., Leemans, R., Lal, M., Whetton, P., Hay, L., Jones, R.N., Katz, R., Kittel, T., Smith, J., Wilby, R., Mata, L.J., Zillman, J., 2001 Climate scenario development, in: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A. (Edspp. 739-768),. In: Climate change 2001: the scitific basis (J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell and C.A. Johnson eds.). Cambridge University Press, Published Place, UK, pp. 739-768.
  29. Nishimura, K., Kishida, O. 2001. Coupling of two competitive systems via density dependent migration,. Ecol. Res. 16, 359-368. https://doi.org/10.1046/j.1440-1703.2001.00401.x
  30. Møller, A.P., Fiedler, W., Berthold, P., 2010. Effects of climate change on birds, pp. 113-128, Oxford University Press, Oxford.
  31. Morison, J.I.L, Morecroft, M.D., 2006. Plant growth and climate change, pp. 12-25, Willey-Blackwell, London.
  32. Murray, J.D., 2003. Mathematical biology I: an introduction, pp. 79-114, Springer-Verlag, New York.
  33. Nam, H.-K., Choi, S.-H., Choi, Y.-S., Yoo, J.-C., 2012. Patterns of waterbirds abundance and habitat use in rice fields, Korean J. Environ. Agric. 31, 359-367. https://doi.org/10.5338/KJEA.2012.31.4.359
  34. Nilsson, A.L.K., Sandell, M.I., 2009. Stress hormone dynamics: an adaptation to migration? Biol. Lett. 5, 480-483. https://doi.org/10.1098/rsbl.2009.0193
  35. Reed, T.E., Grotan, V., Jenouvrier, S., Saether, B., Visser, M.E., 2013. Population growth in a wild bird is buffered against phenological mismatch, Science 340, 488-491. https://doi.org/10.1126/science.1232870
  36. Reich, P.B., Oleksyn, J., 2004. Global patterns of plant leaf N and P in relation to temperature and latitude, Proc. Natl. Acad. Sci. USA 101, 11001-11006. https://doi.org/10.1073/pnas.0403588101
  37. Richardson, W., 1978. Timing and amount of bird migration in relation to weather: a review, Oikos 30, 224-272. https://doi.org/10.2307/3543482
  38. Rodway, M.S., Regehr, H.M., 1999. Habitat selection and reproductive performance of food-stressed herring gulls, Condor 101, 566-576. https://doi.org/10.2307/1370186
  39. Roff, D.A., 2002. Life history evolution, pp. 93-150, Sinauer, Sunderland.
  40. Roger, P.A., 1991 Biodiversity and sustainability of wetland rice production: role and potential of microorganisms and invertebrates, Iin: Hawkswroth, D.L. (Ed), The biodiversity of microorganisms and invertebrates: its role in sustainable agriculture, CAB International, Oxford, UK, pp. 117-136.
  41. Saino, N., Ambrosini, R., Rubolini, D., von Hardenberg, J., Provenzale, A., Huppop, K., Huppop, O., Lehikoinen, A., Lehikoinen, E., Rainio, K., Romano, M., Sokolov, L., 2011. Climate warming, ecological mismatch at arrival and population decline in migratory birds, Proc. Biol. Sci. B 278, 835-842. https://doi.org/10.1098/rspb.2010.1778
  42. Stafford, J.D., Kaminski, R.M., Reineche, K.J., 2010. Avian foods, foraging and habitat conservation in world rice fields, Waterbirds 33, 133-150. https://doi.org/10.1675/063.033.s110
  43. Su, P., Liao, X.L., Zhang, Y., Huang, H., 2012. Influencing factors on rice sheath blight epidemics in integrated rice-duck system, J. Integr. Agric. 11, 1462-1473. https://doi.org/10.1016/S2095-3119(12)60146-4
  44. Trompeter, W.P., Langkilde, T., 2011. Invader danger: lizards faced with novel predators exhibit an altered behavioral response to stress, Horm. Behav. 60, 152-158. https://doi.org/10.1016/j.yhbeh.2011.04.001
  45. UNDP, 2010 Sustaibable rice production systems: scoping paper, pp. 1-20, United Nations Development Programme, New York.
  46. Wang, X.-S., Wu, J. 2012. Seasonal migration dynamics: periodicity, transition delay and finite-dimensional reduction,. Proc. R. Soc. A 468, 634-650. https://doi.org/10.1098/rspa.2011.0236
  47. Xie, J., Hu, L.L., Tang, J.J., Wu, X., Li, N.N., Yuan, Y.G., Yang, H.S., Zhang, J.E., Luo, S.M., Chen, X., 2011. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system, Proc. Natl. Acad. Sci. USA 108, E1381-E1387. https://doi.org/10.1073/pnas.1111043108