참고문헌
- Abe F (2004) Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr--W steels. Mater. Sci. Eng. A 387-389, 565-569. https://doi.org/10.1016/j.msea.2004.01.057
- Aghajani A, Richter F, Somsen C, Fries S G, Steinbach I, and Eggeler G (2009a) On the formation and growth of Mo-rich Laves phase particles during long-term creep of a 12% chromium tempered martensite ferritic steel. Scripta Mater. 61, 1068-1071. https://doi.org/10.1016/j.scriptamat.2009.08.031
- Aghajani A, Somsen C, and Eggeler G (2009b) On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel. Acta Mater. 57, 5093-5106. https://doi.org/10.1016/j.actamat.2009.07.010
- Chen R P, Ghassemi-Armaki H, Maruyama K, and Igarashi M (2011) Long-term microstructural degradation and creep strength in Gr.91 steel. Mater. Sci. Eng. A 528, 4390-4394. https://doi.org/10.1016/j.msea.2011.02.060
- Cui H, Sun F, Chen K, Zhang L, Wan R, Shan A, and Wu J (2010) Precipitation behavior of Laves phase in 10%Cr steel X12CrMoWVNbN10-1-1 during short-term creep exposure. Mater. Sci. Eng. A 527, 7505-7509. https://doi.org/10.1016/j.msea.2010.08.013
- Dong J, He Y, Kim M, and Shin K (2013) Effect of creep stress on the microstructure of 9-12% Cr steel for rotor materials. Microsc. Microanal. 19, 95-98.
- Eggeler G (1989) The effect of long-term creep on particle coarsening in tempered martensite ferritic steels. Acta Metall. 37, 3225-3234. https://doi.org/10.1016/0001-6160(89)90194-6
- Endo T, Masuyama F, and Park K S (2003) Change in Vickers hardness and substructure during creep of a Mod.9Cr-1Mo steel. Mater. Trans. 44, 239-246. https://doi.org/10.2320/matertrans.44.239
- Ghassemi-Armaki H, Chen R, Kano S, Maruyama K, Hasegawa Y, and Igarashi M (2011) Microstructural degradation mechanisms during creep in strength enhanced high Cr ferritic steels and their evaluation by hardness measurement. J. Nucl. Mater. 416, 273-279. https://doi.org/10.1016/j.jnucmat.2011.06.007
- Ghassemi-Armaki H, Chen R, Maruyama K, and Igarashi M (2010) Premature creep failure in strength enhanced high Cr ferritic steels caused by static recovery of tempered martensite lath structures. Mater. Sci. Eng. A 527, 6581-6588. https://doi.org/10.1016/j.msea.2010.07.037
- Ghassemi-Armaki H, Chen R, Maruyama K, and Igarashi M (2013) Contribution of recovery mechanisms of microstructure during long-term creep of Gr.91 steels. J. Nucl. Mater. 433, 23-29. https://doi.org/10.1016/j.jnucmat.2012.09.026
- Ghassemi-Armaki H, Chen R, Maruyama K, Yoshizawa M, and Igarashi M (2009) Static recovery of tempered lath martensite microstructures during long-term aging in 9-12% Cr heat resistant steels. Mater. Lett. 63, 2423-2425. https://doi.org/10.1016/j.matlet.2009.08.024
- Hald J (2008) Microstructure and long-term creep properties of 9-12% Cr steels. Inter. J. Press. Vess. Pip. 85, 30-37. https://doi.org/10.1016/j.ijpvp.2007.06.010
- He Y, Chang J, Dong J, and Shin K (2011) Microstructural evolution of X20CrMoV12.1 steel upon long-term on-site exposure in power plants. Adv. Sci. Lett. 4, 1416-1423. https://doi.org/10.1166/asl.2011.1697
- Kim J H, Kim D I, Kim J S, Choi S H, Yi K W, and Oh K H (2013) Technical investigation into the in-situ electron backscatter diffraction analysis for the recrystallization study on extra low carbon steels. Appl. Microscopy 43, 88-97. https://doi.org/10.9729/AM.2013.43.2.88
- Kipelova A, Belyakov A, and Kaibyshev R (2012) Laves phase evolution in a modified P911 heat resistant steel during creep at 923K. Mater. Sci. Eng. A 532, 71-77. https://doi.org/10.1016/j.msea.2011.10.064
- Klotz U E, Solenthaler C, and Uggowitzer P J (2008) Martensitic-austenitic 9-12% Cr steels--alloy design, microstructural stability and mechanical properties. Mater. Sci. Eng. A 476, 186-194. https://doi.org/10.1016/j.msea.2007.04.093
-
Panait C, Bendick W, Fuchsmann A, Gourgues-Lorenzon A F, and Besson J (2010b) Study of the microstructure of the grade 91 steel after more than 100,000 h of creep exposure at 600
$^{\circ}C$ . Inter. J. Press. Vess. Pip. 87, 326-335. https://doi.org/10.1016/j.ijpvp.2010.03.017 - Panait C, Gourgues-Lorenzon A F, Besson J, Fuchsmann A, Bendick W, Gabrel J, and Piette M (2010a) Long term aging effect on the creep strengthening of the T92 steel. The 9th Liege Conference: Materials for Advanced Power Engineering, Liege, Belgium.
- Payton E J, Aghajani A, Otto F, Eggeler G, and Yardley V A (2012) On the nature of internal interfaces in a tempered martensite ferritic steel and their evolution during long-term creep. Scripta Mater. 66, 1045-1048. https://doi.org/10.1016/j.scriptamat.2012.02.042
-
Rojas D, Garcia J, Prat O, Sauthoff G, and Kaysser-Pyzalla A R (2011) 9%Cr heat resistant steels: alloy design, microstructure evolution and creep response at 650
$^{\circ}C$ . Mater. Sci. Eng. A 528, 5164-5176. https://doi.org/10.1016/j.msea.2011.03.037 - Sonderegger B, Mitsche S, and Cerjak H (2007) Martensite laths in creep resistant martensitic 9-12% Cr steels--Calculation and measurement of misorientations. Mater. Character. 58, 874-882. https://doi.org/10.1016/j.matchar.2006.08.014
- Sonderegger B, Mitsche S, and Cerjak H (2008) Microstructural analysis on a creep resistant martensitic 9-12% Cr steel using the EBSD method. Mater. Sci. Eng. A 481-482, 466-470. https://doi.org/10.1016/j.msea.2006.12.220
- Tak K G, Schulz U, and Eggeler G (2009) On the effect of micrograin crystallography on creep of FeCr alloys. Mater. Sci. Eng. A 510-511, 121-129. https://doi.org/10.1016/j.msea.2008.11.070
피인용 문헌
- Cyclic behaviour of 12% Cr ferritic-martensitic steel upon long-term on-site service in power plants vol.39, pp.10, 2016, https://doi.org/10.1111/ffe.12421
- Microstructure Evolution and Stress Corrosion Cracking Susceptibility of 12Cr Martensitic Steel Upon Long-Term Service in Power Plants vol.28, pp.2, 2019, https://doi.org/10.1007/s11665-018-3840-6