DOI QR코드

DOI QR Code

Association of a Pyruvate Kinase M2 (PKM2) Polymorphism with Back Fat Thickness in Berkshire Pigs

  • Cho, Eun-Seok (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA) ;
  • Jeon, Hyeon-Jeong (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA) ;
  • Lee, Si-Woo (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA) ;
  • Park, Jong-Woon (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA) ;
  • Raveendar, Sebastian (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA) ;
  • Jang, Gul-Won (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA) ;
  • Kim, Tae-Hun (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA) ;
  • Lee, Kyung-Tai (Animal Genomics and Bioinformatics Division, National Institute of Animal Science, RDA)
  • Received : 2013.10.23
  • Accepted : 2013.10.29
  • Published : 2013.12.31

Abstract

Pyruvate kinase M2 (PKM2) is a key regulatory enzyme in the glycolytic pathway. It is one of four pyruvate kinase isoenzymes that widely differ in their occurrence according to tissue type. PKM2 is expressed in differentiated tissues, such as fat tissues, lung, as well as normal proliferating cells, embryonic cells, and tumor cells. The objective of this study was to investigate the association of single nucleotide polymorphisms (SNPs) in the PKM2 gene with meat quality traits in Berkshire pigs. We detected a SNP (g.34341 A>G) in the 3'UTR region of the PKM2 gene in 670 Berkshire pigs through DNA sequencing. Three genotypes, AA, AG, and GG, were found for this SNP, but based on an association analysis with meat quality traits, genotype AA was significantly associated with thicker back fat than genotype GG (p=0.027). Therefore, the g.34341 A>G polymorphism in the 3'UTR region of the porcine PKM2 gene could be applied in pig breeding programs to improve back fat thickness.

Keywords

References

  1. Arlington, V. A. 1980. Official methods of analysis of the association of analytical chemists 14th edition. Washington: AOAC.
  2. Bidanel, J.-P., Milan, D., Iannuccelli, N., Amigues, Y., Boscher, M.-Y., Bourgeois, F., Caritez, J.-C., Gruand, J., Roy, P. L. and Lagant, H. 2001. Detection of quantitative trait loci for growth and fatness in pigs. Genet. Sel. Evol. 33:289-310. https://doi.org/10.1186/1297-9686-33-3-289
  3. Cairns, R. A., Harris, I. S. and Mak, T. W. 2011. Regulation of cancer cell metabolism. Nat. Rev. Cancer, 11:85-95. https://doi.org/10.1038/nrc2981
  4. Cho, K., Kim, M., Jeon, G. and Chung, H. 2011. Association of genetic variants for FABP3 gene with back fat thickness and intramuscular fat content in pig. Mol. Biol. Rep. 38:2161-2166. https://doi.org/10.1007/s11033-010-0344-3
  5. Davoli, R., Fontanesi, L., Zambonelli, P., Bigi, D., Gellin, J., Yerle, M., Milc, J., Braglia, S., Cenci, V. and Cagnazzo, M. 2002. Isolation of porcine expressed sequence tags for the construction of a first genomic transcript map of the skeletal muscle in pig. Anim. Genet. 33:3-18. https://doi.org/10.1046/j.1365-2052.2002.00800.x
  6. de Koning, D. J., Janss, L. L., Rattink, A. P., van Oers, P. A., de Vries, B. J., Groenen, M. A., van der Poel, J. J., de Groot, P. N. and van Arendonk, J. A. 1999. Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (Sus scrofa). Genetics. 152:1679-1690.
  7. Duan, Y. Y., Ma, J. W., Yuan, F., Huang, L. B., Yang, K. X., Xie, J. P., Wu, G. Z. and Huang, L. S. 2009. Genome-wide identification of quantitative trait loci for pork temperature, pH decline, and glycolytic potential in a large-scale White Duroc× Chinese Erhualian resource population. J. Anim. Sci. 87:9-16. https://doi.org/10.2527/jas.2008-1128
  8. Fan, B., Lkhagvadorj, S., Cai, W., Young, J., Smith, R., Dekkers, J., Huff-Lonergan, E., Lonergan, S. and Rothschild, M. 2010. Identification of genetic markers associated with residual feed intake and meat quality traits in the pig. Meat Sci. 84:645-650. https://doi.org/10.1016/j.meatsci.2009.10.025
  9. Fontanesi, L., Davoli, R., Nanni Costa, L., Beretti, F., Scotti, E., Tazzoli, M., Tassone, F., Colombo, M., Buttazzoni, L. and Russo, V. 2008. Investigation of candidate genes for glycolytic potential of porcine skeletal muscle: Association with meat quality and production traits in Italian Large White pigs. Meat Sci. 80:780-787. https://doi.org/10.1016/j.meatsci.2008.03.022
  10. Fontanesi, L., Davoli, R., Scotti, E. and Russo, V. 2004. Study of candidate genes for glycolytic potential of porcine skeletal muscle: identification and analysis of mutations, linkage and physical mapping and association with meat quality traits in pigs. Cytogenet. Genome Res. 102:145-151.
  11. Gerbens, F., De Koning, D., Harders, F., Meuwissen, T., Janss, L., Groenen, M., Veerkamp, J., Van Arendonk, J. and Te Pas, M. 2000. The effect of adipocyte and heart fatty acid-binding protein genes on intramuscular fat and backfat content in Meishan crossbred pigs. J. Anim. Sci. 78:552-559. https://doi.org/10.2527/2000.783552x
  12. Gerbens, F., Van Erp, A., Harders, F., Verburg, F., Meuwissen, T., Veerkamp, J. and Te Pas, M. 1999. Effect of genetic variants of the heart fatty acid-binding protein gene on intramuscular fat and performance traits in pigs. J. Anim. Sci. 77, 846-852. https://doi.org/10.2527/1999.774846x
  13. Gerbens, F., Verburg, F., Van Moerkerk, H., Engel, B., Buist, W., Veerkamp, J. and Te Pas, M. 2001. Associations of heart and adipocyte fatty acid-binding protein gene expression with intramuscular fat content in pigs. J Anim. Sci. 79:347-354. https://doi.org/10.2527/2001.792347x
  14. Gilbert, H., Le Roy, P., Milan, D. and Bidanel, J. -P. 2007. Linked and pleiotropic QTLs influencing carcass composition traits detected on porcine chromosome 7. Genet. Res. 89:65-72. https://doi.org/10.1017/S0016672307008701
  15. Gleeson, T. T. 1996. Post-exercise lactate metabolism: a comparative review of sites, pathways, and regulation. Annu. Rev. Physiol. 58:565-581. https://doi.org/10.1146/annurev.ph.58.030196.003025
  16. Grau, R. and Hamm, R. 1952. Eine einfache Methode zur Bestimmung der Wasserbindung in Fleisch. Fleischwirtschaft. 4:295-297.
  17. Grau, R. and Hamm, R. 1956. Die Bestimmung der Wasserbindung des Fleisches mittels der Pressmethode. Fleischwirtschaft. 8:733-736.
  18. Grindflek, E., Szyda, J., Liu, Z. and Lien, S. 2001. Detection of quantitative trait loci for meat quality in a commercial slaughter pig cross. Mamm. Genome. 12:299-300. https://doi.org/10.1007/s003350010278
  19. Jacob, M. and Gallinaro H. 1989. The 5' splice site: phylogetic evalution and variable geometry of association with U1RNA. Nucleic Acids Res. 17:2159-2180. https://doi.org/10.1093/nar/17.6.2159
  20. Li, H., Lund, M., Christensen, O., Gregersen, V., Henckel, P. and Bendixen, C. 2010. Quantitative trait loci analysis of swine meat quality traits. J Anim. Sci. 88:2904-2912. https://doi.org/10.2527/jas.2009-2590
  21. Malek, M., Dekkers, J. C., Lee, H. K., Baas, T. J., Prusa, K., Huff-Lonergan, E. and Rothschild, M. F. 2001. A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. II. Meat and muscle composition. Mamm. Genome. 12:637-645. https://doi.org/10.1007/s003350020019
  22. Markljung, E., Braunschweig, M. H., Karlskov-Mortensen, P., Bruun, C. S., Sawera, M., Cho, I. -C., Hedebro-Velander, I., Josell, Å., Lundstrom, K. and von Seth, G. 2008. Genomewide identification of quantitative trait loci in a cross between Hampshire and Landrace II: meat quality traits. BMC genet. 9:22.
  23. Nezer, C., Moreau, L., Wagenaar, D. and Georges, M. 2002. Results of a whole genome scan targeting QTL for growth and carcass traits in a Pietrain ${\times}$ Large White intercross. Genet. Sel. Evol. 34:371-388. https://doi.org/10.1186/1297-9686-34-3-371
  24. Noguchi, T., Inoue, H. and Tanaka, T. 1986. The M1-and M2-type isozymes of rat pyruvate kinase are produced from the same gene by alternative RNA splicing. J. Biol. Chem. 261:13807-13812.
  25. Ovilo, C., Clop, A., Noguera, J., Oliver, M., Barragan, C., Rodriguez, C., Silio, L., Toro, M., Coll, A. and Folch, J. 2002. Quantitative trait locus mapping for meat quality traits in an Iberian × Landrace F2 pig population. J. Anim. Sci. 80:2801-2808. https://doi.org/10.2527/2002.80112801x
  26. Ovilo, C., Perez-Enciso, M., Barragan, C., Clop, A., Rodriguez, C., Oliver, M. A., Toro, M. A. and Noguera, J. L. 2000. A QTL for intramuscular fat and backfat thickness is located on porcine chromosome 6. Mamm. Genome. 11:344-346. https://doi.org/10.1007/s003350010065
  27. Reiner, G., Heinricy, L., Muller, E., Geldermann, H. and Dzapo, V. 2002. Indications of associations of the porcine FOS protooncogene with skeletal muscle fibre traits. Anim. Genet. 33:49-55. https://doi.org/10.1046/j.1365-2052.2002.00805.x
  28. Rohrer, G. and Keele, J. 1998. Identification of quantitative trait loci affecting carcass composition in swine: I. Fat deposition traits. J. Anim. Sci. 76:2247-2254. https://doi.org/10.2527/1998.7692247x
  29. Soma, Y., Uemoto, Y., Sato, S., Shibata, T., Kadowaki, H., Kobayashi, E. and Suzuki, K. 2011. Genome-wide mapping and identification of new quantitative trait loci affecting meat production, meat quality, and carcass traits within a Duroc purebred population. J. Anim. Sci. 89:601-608. https://doi.org/10.2527/jas.2010-3119
  30. Szyda, J., Grindflek, E., Liu, Z. and Lien, S. 2003. Multivariate mixed inheritance models for QTL detection on porcine chromosome 6. Genet. Res. 81:65-73. https://doi.org/10.1017/S0016672302006043
  31. Takegawa, S., Shinohara, T. and Miwa, S. 1984. Hemin-induced conversion of pyruvate kinase isozymes in K562 cells. Blood. 64:754-757.
  32. Uleberg, E., Widerøe, I., Grindflek, E., Szyda, J. and Lien, S. 2005. Fine mapping of a QTL for intramuscular fat on porcine chromosome 6 using combined linkage and linkage disequilibrium mapping. J. Anim. Breed. Genet. 122:1-6.
  33. Yue, G., Stratil, A., Cepica, S., Schroffel, J., Schroffelova, D., Fontanesi, L., Cagnazzo, M., Moser, G., Bartenschlager, H. and Reiner, G. 2003. Linkage and QTL mapping for Sus scrofa chromosome 7. J. Anim. Breed. Genet. 120:56-65. https://doi.org/10.1046/j.0931-2668.2003.00424.x

Cited by

  1. Whole genome scan reveals the genetic signature of African Ankole cattle breed and potential for higher quality beef vol.18, pp.1, 2017, https://doi.org/10.1186/s12863-016-0467-1