References
- ACI Committee 544 (1982), "State of the art report of fibre reinforced concrete", Concrete Int.: Des. Construct., 4(5), 9-30.
- American Society for Testing and Materials (ASTMs) C 618-03. (2003), Standard test method for coal fly ash and raw or calcined natural pozzolan for use in concrete.
- Bakharev, T. (2005), "Geopolymeric materials prepared using class fly ash and elevated temperature curing", Cement Concrete Res., 35, 1224-1232. https://doi.org/10.1016/j.cemconres.2004.06.031
- Bakharev, T. (2005a), "Durability of geopolymer materials in sodium and magnesium sulfate solutions", Cement Concrete Res., 35(6), 1233-1246. https://doi.org/10.1016/j.cemconres.2004.09.002
- Bakharev, T. (2005c), "Resistance of geopolymer materials to acid attack", Cement Concrete Res., 35(4), 658-670. https://doi.org/10.1016/j.cemconres.2004.06.005
- Bencardino, F., Rizzuti, L., Spadea, G. and Swamy, R.N. (2008), "Stress-strain behavior of steel fibrereinforced concrete in compression", J. Mater. Civil Eng., 20(3), 255-263. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:3(255)
- Bentur, A. and Mindess, S. (1990), Fibre Reinforced Cementitious Composites, Elsevier Applied Science, London.
- Dattatreya, J.K., Rajamane, N.P., Sabitha, D., Ambily, P.S. and Nataraja, M.C. (2011), "Flexural behaviour of reinforced Geopolymer concrete beams", Int. J. Civil Struct. Eng., 2(1), 138-159.
- Davidovits, J. (1991), "Geopolymers: inorganic polymeric new materials", J. Thermal Anal., 37,1633-1656. https://doi.org/10.1007/BF01912193
- Davidovits, J. (1994), "High alkali cements for 21st century concretes in concrete technology- Past, present and future", Proceedings of the V. Mohan Malhotra symposium, (Ed. P. Kumar Mehta), ACI SP- 144, 383-397.
- Duxson, P., Fernandez, J.A., Provis, J.L., Lukey, G.C., Palomo, A. and Van Deventer. (2007), "Geopolymer technology- The current state of the art", J. Mater. Sci., 42 (9), 2917-2933. https://doi.org/10.1007/s10853-006-0637-z
- Fernandez, J.A., Palomo, A. and Lopez, H.C. (2006) "Engineering properties of alkali activated fly ash concrete", ACI Mater. J., 103(2), 106-112.
- Hardjito, D. and Rangan, B.V. (2005), Developments and Properties of Low Calcium Fly Ash Based Geopolymer Concrete, Research report GC1, Curtin University of Technology, Perth, Australia.
- Hardjito, D., Wallah S.E., Sumajouw M.D.J. and Rangan B.V. (2004), "On the development of fly ash-Based gGeopolymer concrete", ACI Mater. J., 467-472.
- IS 1199:1959 (reaffirmed 2004), Methods of sampling and analysis of concrete, Bureau of Indian Standards, New Delhi.
- IS 383: 1970 (reaffirmed 2002), Indian standard code of practice for specification for coarse and fine aggregates from natural sources for concrete. Bureau of Indian Standards, New Delhi.
- IS 456: 2000, Plain and reinforced concrete - Code of Practice, Bureau of Indian Standards, New Delhi.
- IS 516: 1959 (reaffirmed 2004), Method of test for strength of concrete, Bureau of Indian Standards, New Delhi.
- IS 5816: 1999, (reaffirmed 2004), Method of test for splitting tensile strength of concrete, Bureau of Indian Standards, New Delhi.
- Jianming, G., Wei, S. and Keiji, M. (1997), "Mechanical Properties of Steel Fibre-reinforced High-strength Lightweight Concrete", Cement Concrete Compos., 19, 307-313. https://doi.org/10.1016/S0958-9465(97)00023-1
- Khaloo, A.R. and Kim, N. (1996), "Mechanical properties of normal to high strength steel fibre- reinforced concrete", Cement Concrete Aggr., b(2), 92-97.
- Malhotra, V. M. (1999), "Making concrete greener with fly-ash", ACI Concrete Int., 21(5), 42-45.
- McCaffrey, R. (2002), "Climate change and the cement industry", Global cement and lime magazine (Environmental special issue), 15-19.
- Mehta, P.K. (2001), "Reducing the environmental impact of concrete", ACI Concrete Int., 23(10), 61-66.
-
Mustafa Al Bakri, A.M., Kamarudin, H., Bnhussain, M., Rafiza, A.R. and Zarina, Y. (2012), "Effect of
$Na_2SiO_3$ /NaOH Ratios and NaOH Molarities on compressive strength of fly-ash-based geopolymer", ACI Mater. J., 109(5), 503-508. - Naaman, A.E. (1985), "Fibre reinforcement for concrete", Concrete Int.: Des. Construct., 7(3), 21-25.
- Neville, A.M. (2005), Properties of concrete, Fourth edition, Addison - Wesely Longman Ltd.
- Pillai, U.S. and Menon, D. (1998), Reinforced concrete design, Tata McGraw-Hill, Edition-1.
- Ramachandran, S., Ramakrishnan, V. and Johnston, D. (1992), "Role of high volume fly ash in controlling alkali-aggregate activity", ACI SP, 132, 591-614.
- Rangan, B.V. (2008), "Mix design and production of flyash based geopolymer concrete", Indian Concrete J., 7-15.
- Rashad, A.M., Bai, Y., Basheer, P.A.M., Milestone, N.B. and Collier, N.C. (2013), "Hydration and properties of sodium sulfate activated slag", Cement Concrete Compos., 37, 20-29. https://doi.org/10.1016/j.cemconcomp.2012.12.010
- Sofi, D., Van Deventer, J.S.J., Mendis, P.A. and Lukey, G.C. (2006), "Engineering properties of inorganic polymer concretes (IPCs)", Cement Concrete Res., 37, 251-257.
- Song, P.S. and Hwang, S. (2004), "Mechanical properties of high-strength steel fibre-reinforced concrete", Construction and Building Materials, 18, 669-673. https://doi.org/10.1016/j.conbuildmat.2004.04.027
- Susan, B., Ruby, D.G., Silvio, D. and Erich, R. (2006), "Performance of Geopolymeric concrete reinforced with steel fibres", 10th International Inorganic -Bonded Fibre Composites Conference, Brazil, 156-167.
- Vanchai, S., Ampol, W. and Chindaprasirt, P. (2013), "Properties of Pervious Geopolymer Concrete using Rrecycled Aggregates", Construct. Build. Mater., 42, 33-39. https://doi.org/10.1016/j.conbuildmat.2012.12.046
- Wafa F.F. and Ashour S.A. (1992), "Mechanical properties of high- strength fibre reinforced concrete", ACI Mater. J., 89(5), 449-455.
- Wallah, S.E. and Rangan, B.V. (2006), "Low calcium fly ash based geopolymer concrete: long term properties", Research report GC 2, Curtin University of Technology, Perth, Australia.
Cited by
- Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer vol.161, 2018, https://doi.org/10.1016/j.conbuildmat.2017.11.122
- Mechanical properties of steel fibre reinforced geopolymer concretes at elevated temperatures vol.114, 2016, https://doi.org/10.1016/j.conbuildmat.2016.03.158
- Performance of bricks and brick masonry prism made using coal fly ash and coal bottom ash vol.4, pp.4, 2016, https://doi.org/10.12989/acc.2016.4.4.231
- Influence of steel fibers on the mechanical properties and impact resistance of lightweight geopolymer concrete vol.152, 2017, https://doi.org/10.1016/j.conbuildmat.2017.06.092
- High performance fibre reinforced cement concrete slender structural walls vol.2, pp.4, 2014, https://doi.org/10.12989/acc.2014.2.4.309
- Flexural behaviour of fibre reinforced geopolymer concrete composite beams vol.15, pp.3, 2015, https://doi.org/10.12989/cac.2015.15.3.437
- SFRHPC interior beam-column-slab joints under reverse cyclic loading vol.3, pp.3, 2015, https://doi.org/10.12989/acc.2015.3.3.237
- Development of geopolymer with pyroclastic flow deposit called Shirasu vol.4, pp.3, 2015, https://doi.org/10.12989/amr.2015.4.3.179
- Behavior of Ambient Cured Geopolymer Concrete Columns under Different Loads vol.115, pp.5, 2018, https://doi.org/10.14359/51702250
- Crack growth resistance in fibre reinforced alkali-activated fly ash concrete exposed to extreme temperatures vol.51, pp.2, 2018, https://doi.org/10.1617/s11527-018-1163-6
- Properties of Steel Fiber Reinforced Geopolymer vol.659, pp.None, 2015, https://doi.org/10.4028/www.scientific.net/kem.659.143
- Properties of concrete incorporating sand and cement with waste marble powder vol.4, pp.2, 2013, https://doi.org/10.12989/acc.2016.4.2.145
- Improving compressive strength of low calcium fly ash geopolymer concrete with alccofine vol.5, pp.1, 2017, https://doi.org/10.12989/acc.2017.5.1.17
- Strength and permeation properties of alccofine activated low calcium fly ash geopolymer concrete vol.20, pp.6, 2013, https://doi.org/10.12989/cac.2017.20.6.683
- The Effect of Specimen Shape on the Mechanical Properties of Sisal Fiber-Reinforced Concrete vol.12, pp.None, 2013, https://doi.org/10.2174/1874149501812010368
- Performance of self-compacting geopolymer concrete with and without GGBFS and steel fiber vol.6, pp.4, 2018, https://doi.org/10.12989/acc.2018.6.4.323
- Mechanical and durability properties of fly ash and slag based geopolymer concrete vol.6, pp.4, 2013, https://doi.org/10.12989/acc.2018.6.4.345
- P-MInteractions of Geopolymer Concrete Column Reinforced with and without Steel Fiber vol.117, pp.1, 2013, https://doi.org/10.14359/51720206
- Role of fibers on the performance of geopolymer concrete exterior beam column joints vol.9, pp.2, 2013, https://doi.org/10.12989/acc.2020.9.2.115
- Development of eco-friendly concrete produced with Rice Husk Ash (RHA) based geopolymer vol.9, pp.2, 2020, https://doi.org/10.12989/acc.2020.9.2.139
- Effect of Steel Fiber on Engineering Properties of Geopolymer Concrete vol.117, pp.3, 2013, https://doi.org/10.14359/51724591
- Effect of fly ash/silica fume ratio and curing condition on mechanical properties of fiber-reinforced geopolymer vol.9, pp.4, 2013, https://doi.org/10.1080/21650373.2019.1709999
- Strength characteristics of granulated ground blast furnace slag-based geopolymer concrete vol.11, pp.3, 2013, https://doi.org/10.12989/acc.2021.11.3.219
- Engineering Properties of Hybrid Fibre Reinforced Ternary Blend Geopolymer Concrete vol.5, pp.8, 2021, https://doi.org/10.3390/jcs5080203
- Survey of Mechanical Properties of Geopolymer Concrete: A Comprehensive Review and Data Analysis vol.14, pp.16, 2013, https://doi.org/10.3390/ma14164690
- Mechanical and Microstructural Characterization of Quarry Rock Dust Incorporated Steel Fiber Reinforced Geopolymer Concrete and Residual Properties after Exposure to Elevated Temperatures vol.14, pp.22, 2021, https://doi.org/10.3390/ma14226890
- Impact of fiber reinforcements on properties of geopolymer composites: A review vol.44, pp.None, 2013, https://doi.org/10.1016/j.jobe.2021.102628