References
-
Al-Juaid, F., Merazga, A., Abdel-Wahab, F. and Al-Amoudi, M.N. (2012), "ZnO Spin-Coating of
$TiO_2$ photo-electrodes to enhance the efficiency of associated dye-sensitized solar cells", World J. Condensed Matter Physics. 2, 192-196. https://doi.org/10.4236/wjcmp.2012.24032 - Chang, P.C. and Lu, J.G. (2008), "ZnO nanowire field-effect transistors", IEEE T. Electron. Dev., 55, 2977-2987. https://doi.org/10.1109/TED.2008.2005181
- Chiou, W.T., Wu, W.Y. and Ting, J.M. (2003), "Growth of single crystal ZnO nanowires using sputter deposition", Diam. Relat. Mater., 12, 1841-1844. https://doi.org/10.1016/S0925-9635(03)00274-7
- Emslie, D., Bonner, P. and Peck, C. (1958), "Fluid flow basics (ideal Case)", J. Appl. Phys. 29, 858-862. https://doi.org/10.1063/1.1723300
- Hanaor, D., Trianni, G. and Sorrell, C. (2011), "Morphology and photocatalytic activity of highly oriented mixed phase titanium dioxide thin film", Surf. Coat. Tech., 205(12), 855-874.
- Hellstrom, S.L. (2007), Published course work for physics 210, Stanford University, Autumn 2007.
- Heo, Y.W., Varadarajan, V., Kaufman, M., Kim, K., Norton, D.P., Ren, F. and Fleming, P.H. (2002), "Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy", Appl. Phys. Lett. 81, 3046-3048. https://doi.org/10.1063/1.1512829
- Hewes, J. (2011), "Power supplies", The Electronics Club.
- Holt, C.A. (1978), Electronic Circuits, Digital and Analog. John Wiley and Sons, New York.
- Hong, J.I., Bae, J., Wang, Z.L. and Snyder, R.L. (2009), "Room temperature, texture-controlled growth of ZnO thin films and their application for growing aligned ZnO nanowire arrays", Nanotechnology, 20, 085609. https://doi.org/10.1088/0957-4484/20/8/085609
- Huang, M.H., Wu, Y.Y., Feick, H., Tran, N., Weber, E. and Yang, P.D. (2001), "Catalytic growth of zinc oxide nanowires by vapor transport", Adv. Mater., 13, 113-116. https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
- Ilican, S., Caglar, Y. and Caglar, M. (2008), "Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method", J. Optoelectron. Adv. Mater., 10(10), 2578-2583.
- Oliveira, J.P., Laia, C.T. and Branco, L.C. (2012), "Optimization of Ionic Liquid Film Deposition by Spin and Dip Coating Techniques", J. Maters. Sc. Eng. B, 2(8), 437-441.
- Kamaruddin, S.A., Chan, K., Yow, H., Sahdan, M.Z., Saim, H. and Knipp, D. (2010), "Zinc oxide films prepared by sol-gel spin coating technique", Appl. Phys. A. 104, 263-268.
- Lin, D., Wu, H. and Pan, W. (2007), "Photoswitches and memories assembled by electrospinning aluminum-doped zinc oxide single nanowires", Adv. Mater. 19, 3968-3972. https://doi.org/10.1002/adma.200602802
- Madou, M. (2002), Fundamentals of Microfabrication. The Science of Miniaturization, 2nd ed., CRC Press.
- Middleman, S. and Hochberg, A.K. (1993), Process Engineering Analysis in Semiconductor Devices Fabrication, McGraw Hill, P. 313.
- Mihi, A., Oca-mtlide, M. and Miguez, H. (2006), "Oriented colloidal-crystal thin films by spin-coating microspheres dispersed in volatile media", Adv. Mat., 18, 2244. https://doi.org/10.1002/adma.200600555
- Mitzi, D.B., Kosbar, L.L., Murray, C.E., Copel, M. and Atzali, A. (2004), "High mobility ultrathin semiconducting films prepared by spin coating", Nature, 428, 299-303. https://doi.org/10.1038/nature02389
- Meyerhofer, D. (1978), "Key stages in spin coating process", J. Appl. Phys., 49, 3993. https://doi.org/10.1063/1.325357
- Niranjan, S., Parija, B. and Panigrahi, S. (2009), "Fundamental understanding and modeling of spin coating process: A review", Indian J. Phys., 83(4), 493-502. https://doi.org/10.1007/s12648-009-0009-z
- Pan, Z.W., Dai, Z.R. and Wang, Z.L. (2001), "Nanobelts of semiconducting oxides", Science, 291, 1947-1949. https://doi.org/10.1126/science.1058120
- Panigrahi, S., Waugh, S., Rout, S.K., Hassan, A.K. and Ray, A.K. (2008), "Study of spin coated organic thin film under spectrophotometer", J. Mater. Res., 28, 858.
- Peeters, T. and Remoortere, B.V. (2008), "Parameters of the spin coating process", J. Appl. Sci., 46, 685-696.
- Schubert, D.W. and Dunkel, T. (2003), "Spin coating from molecular point of view: Its concentration regimes, Influence of molar of molar mass and distribution", Mater. Res. Innov., 7, 314. https://doi.org/10.1007/s10019-003-0270-2
- Schuler, A.C. (1999), Electronics Principles and Applications. Fifth edition; McGraw-Hill, New York.
- Schwartz, L.W. and Roy, R.V. (2004), "Theoretical and numerical results for spin coating of viscous liquids", Phys. Fluid, 16, 569. https://doi.org/10.1063/1.1637353
- Spin Coating Machine (2013), Available @: http://www.holmarc.com/spin_coating_machine.html., Retrieve on February 18.
- Sui, X.M., Shao, C.L. and Liu, Y.C. (2005), "White-light emission of polyvinyl alcohol/ZnO hybrid nanofibers prepared by electrospinning", Appl. Phys. Lett., 87, 113-115.
- Swati, S., Tran, A., Nalamasu, O. and Dutta, P.S. (2006), "Spin-coated ZnO thin films using ZnO Nano-colloid", J. Electron. Mater., 35(6), 9965-9968.
- Wu, J.J., Wen, H.I. Tseng, C.H. and Liu, S.C. (2004), "Well-aligned ZnO nanorods via hydrogen treatment of ZnO films", Adv. Funct. Mater. 14, 806-810. https://doi.org/10.1002/adfm.200305092
- Xu, S. and Wang, Z.L. (2011), "One-dimensional ZnO nanostructures: solution growth and functional properties", Nano Res., 4(11), 1013-1098 https://doi.org/10.1007/s12274-011-0160-7
- Xu, C.K., Xu, G.D., Liu, Y.K. and Wang, G.H. (2002), "A simple and novel route for the preparationof ZnO nanorods", Solid State Commun., 122, 175-179. https://doi.org/10.1016/S0038-1098(02)00114-X
- Vayssieres, L., Keis, K., Lindquist, S.E. and Hagfeldt, A. (2001), "Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO", J. Phys. Chem. B, 105, 3350-3352. https://doi.org/10.1021/jp010026s
- Verges, M.A., Mifsud, A. and Serna, C.J. (1990), "Formation of rodlike zinc-oxide microcrystals in homogeneous solutions", J. Chem. Soc. Faraday Trans., 86, 959-963. https://doi.org/10.1039/ft9908600959
- Wang, Z.L. (2008), "Towards self-powered nanosystems: From nanogenerators to nanopiezotronics", Adv. Funct. Mater. 18, 3553-3567. https://doi.org/10.1002/adfm.200800541
- Washo, B.D. (1977), "Rheology and modeling of the spin coating process", IBM J. Res. Develop., 190-198.
- Yuan, H. and Zhang, Y. (2004), "Preparation of well-aligned ZnO whiskers on glass substrate by atmospheric MOCVD", J. Cryst. Growth., 263, 119-124. https://doi.org/10.1016/j.jcrysgro.2003.11.084
- Zhang, H., Yang, D.R., Ma, X.Y., Du, N., Wu, J.B. and Que, D.L. (2006), "Straight and thin ZnO nanorods: Hectogram-scale synthesis at low temperature and cathodoluminescence", J. Phys. Chem. B, 110, 827-830. https://doi.org/10.1021/jp055351k
Cited by
- Cobalt Oxide (CoOx) as an Efficient Hole-Extracting Layer for High-Performance Inverted Planar Perovskite Solar Cells vol.8, pp.49, 2016, https://doi.org/10.1021/acsami.6b10803
- A Review of Speckle Pattern Fabrication and Assessment for Digital Image Correlation vol.57, pp.8, 2017, https://doi.org/10.1007/s11340-017-0283-1
- Sol-gel chemistry, templating and spin-coating deposition: A combined approach to control in a simple way the porosity of inorganic thin films/coatings vol.248, 2017, https://doi.org/10.1016/j.micromeso.2017.04.017
- A disposable immunosensor using ITO based electrode modified by a star-shaped polymer for analysis of tumor suppressor protein p53 in human serum vol.107, 2018, https://doi.org/10.1016/j.bios.2018.02.017
- Spin coating formation of self-assembled ferroelectric β-glycine films vol.496, pp.1, 2016, https://doi.org/10.1080/00150193.2016.1157434
- Indium tin oxide (ITO): A promising material in biosensing technology vol.97, 2017, https://doi.org/10.1016/j.trac.2017.09.021
- Fabrication of Porous Polytetrafluoroethylene thin Film from Powder Dispersion-solution for Energy Nanogenerator Applications vol.24, pp.2, 2017, https://doi.org/10.4150/KPMI.2017.24.2.102
- Modification of Poly(dimethylsiloxane) by Mesostructured Siliceous Films for Constructing Protein-Interactive Surfaces vol.16, pp.0, 2018, https://doi.org/10.1380/ejssnt.2018.41
- HYDRO- AND OLEOPHOBIC COATINGS BASED ON POLYVINYL ALCOHOL AND SILICON DIOXIDE NANOPARTICLES vol.62, pp.3, 2018, https://doi.org/10.29235/1561-8323-2018-62-3-298-303
- Aligned Droplet Patterns by Dewetting of Polymer Bilayers vol.51, pp.15, 2013, https://doi.org/10.1021/acs.macromol.8b00620
- Photocatalytic performance of rod-shaped copper oxides prepared by spin coating vol.14, pp.3, 2013, https://doi.org/10.1049/mnl.2018.5447
- Promote Localized Surface Plasmonic Sensor Performance via Spin-Coating Graphene Flakes over Au Nano-Disk Array vol.6, pp.2, 2019, https://doi.org/10.3390/photonics6020057
- Effect of Preparation and Reduction on Specific Surface Electrical Resistance of Thin Films Obtained from Graphene Oxide Dispersion vol.10, pp.5, 2013, https://doi.org/10.1134/s2075113319050125
- A Modified Equation for Thickness of the Film Fabricated by Spin Coating vol.11, pp.9, 2019, https://doi.org/10.3390/sym11091183
- Direct Oligosaccharide Profiling Using Thin-Layer Chromatography Coupled with Ionic Liquid-Stabilized Nanomatrix-Assisted Laser Desorption-Ionization Mass Spectrometry vol.91, pp.18, 2013, https://doi.org/10.1021/acs.analchem.9b01241
- Mathematical model for thickness of off‐center spin‐coated polymer films vol.137, pp.6, 2013, https://doi.org/10.1002/app.48356
- Spin-Coated Polysaccharide-Based Multilayered Freestanding Films with Adhesive and Bioactive Moieties vol.25, pp.4, 2020, https://doi.org/10.3390/molecules25040840
- Morphological and Structural Properties of Sol-Gel Derived ZnO Thin Films Spin-Coated on Different Substrates vol.301, pp.None, 2020, https://doi.org/10.4028/www.scientific.net/ssp.301.35
- Surface Modifications for Implants Lifetime extension: An Overview of Sol-Gel Coatings vol.10, pp.6, 2013, https://doi.org/10.3390/coatings10060589
- Fabrication of a Silica-Silica Nanoparticle Monolayer Array Nanocomposite Film on an Anodic Aluminum Oxide Substrate and Its Optical and Tribological Properties vol.12, pp.24, 2013, https://doi.org/10.1021/acsami.0c03436
- Elemental, Optical, and Electrochemical Study of CH3NH3PbI3 Perovskite-Based Hole Transport Layer-Free Photodiode vol.54, pp.9, 2013, https://doi.org/10.1134/s1063782620090055
- Sol-Gel-Derived Bioactive and Antibacterial Multi-Component Thin Films by the Spin-Coating Technique vol.6, pp.10, 2020, https://doi.org/10.1021/acsbiomaterials.0c01140
- Fabrication and characterization of ultrathin spin-coated poly(L-lactic acid) films suitable for cell attachment and curcumin loading vol.15, pp.6, 2013, https://doi.org/10.1088/1748-605x/aba40a
- Spin coating method improved the performance characteristics of films obtained from poly(lactic acid) and cellulose nanocrystals vol.26, pp.None, 2013, https://doi.org/10.1016/j.susmat.2020.e00212
- Electroforming-free flexible organic resistive random access memory based on a nanocomposite of poly(3-hexylthiophene-2,5-diyl) and orange dye with a low threshold voltage vol.35, pp.12, 2020, https://doi.org/10.1088/1361-6641/abbaf0
- Spin-speed independent thickness and molecular adsorption behaviour of polyelectrolyte multilayers vol.93, pp.2, 2021, https://doi.org/10.1051/epjap/2021200294
- Effect of Spin Coating Parameters on the Electrochemical Properties of Ruthenium Oxide Thin Films vol.2, pp.1, 2013, https://doi.org/10.3390/electrochem2010008
- Janus Particle Preparation through UV-Induced Partial Photodegradation of Spin-Coated Particle Films vol.37, pp.27, 2013, https://doi.org/10.1021/acs.langmuir.1c00848
- Laser-assisted fabrication and modification of copper and zinc oxide nanostructures in liquids for photovoltaic applications vol.554, pp.None, 2021, https://doi.org/10.1016/j.apsusc.2021.149570
- Fabrication by Spin-Coating and Optical Characterization of Poly(styrene-co-acrylonitrile) Thin Films vol.11, pp.9, 2013, https://doi.org/10.3390/coatings11091015
- Electrochromic Behavior of Vanadium Pentoxide Thin Films Prepared by a Sol-Gel Spin Coating Process vol.218, pp.19, 2013, https://doi.org/10.1002/pssa.202100282
- Near total reflection x-ray photoelectron spectroscopy: quantifying chemistry at solid/liquid and solid/solid interfaces vol.54, pp.46, 2013, https://doi.org/10.1088/1361-6463/ac2067
- Recent advances in efficient emissive materials-based OLED applications: a review vol.56, pp.34, 2013, https://doi.org/10.1007/s10853-021-06503-y
- Nitrocellulose Membrane for Paper-based Biosensor vol.26, pp.None, 2013, https://doi.org/10.1016/j.apmt.2021.101305