DOI QR코드

DOI QR Code

A theoritical study on spin coating technique

  • Tyona, M.D. (Department of Physics, Benue State University)
  • Received : 2012.06.21
  • Accepted : 2013.04.08
  • Published : 2013.12.25

Abstract

A comprehensive theory of the spin coating technique has been reviewed and the basic principles and parameters controlling the process are clearly highlighted, which include spin speed, spin time, acceleration and fume exhaust. The process generally involves four stages: a dispense stage, substrate acceleration stage, a stage of substrate spinning at a constant rate and fluid viscous forces dominate fluid thinning behaviour and a stage of substrate spinning at a constant rate and solvent evaporation dominates the coating thinning behaviour. The study also considered some common thin film defects associated with this technique, which include comet, striation, chucks marks environmental sensitivity and edge effect and possible remedies.

Keywords

References

  1. Al-Juaid, F., Merazga, A., Abdel-Wahab, F. and Al-Amoudi, M.N. (2012), "ZnO Spin-Coating of $TiO_2$ photo-electrodes to enhance the efficiency of associated dye-sensitized solar cells", World J. Condensed Matter Physics. 2, 192-196. https://doi.org/10.4236/wjcmp.2012.24032
  2. Chang, P.C. and Lu, J.G. (2008), "ZnO nanowire field-effect transistors", IEEE T. Electron. Dev., 55, 2977-2987. https://doi.org/10.1109/TED.2008.2005181
  3. Chiou, W.T., Wu, W.Y. and Ting, J.M. (2003), "Growth of single crystal ZnO nanowires using sputter deposition", Diam. Relat. Mater., 12, 1841-1844. https://doi.org/10.1016/S0925-9635(03)00274-7
  4. Emslie, D., Bonner, P. and Peck, C. (1958), "Fluid flow basics (ideal Case)", J. Appl. Phys. 29, 858-862. https://doi.org/10.1063/1.1723300
  5. Hanaor, D., Trianni, G. and Sorrell, C. (2011), "Morphology and photocatalytic activity of highly oriented mixed phase titanium dioxide thin film", Surf. Coat. Tech., 205(12), 855-874.
  6. Hellstrom, S.L. (2007), Published course work for physics 210, Stanford University, Autumn 2007.
  7. Heo, Y.W., Varadarajan, V., Kaufman, M., Kim, K., Norton, D.P., Ren, F. and Fleming, P.H. (2002), "Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy", Appl. Phys. Lett. 81, 3046-3048. https://doi.org/10.1063/1.1512829
  8. Hewes, J. (2011), "Power supplies", The Electronics Club.
  9. Holt, C.A. (1978), Electronic Circuits, Digital and Analog. John Wiley and Sons, New York.
  10. Hong, J.I., Bae, J., Wang, Z.L. and Snyder, R.L. (2009), "Room temperature, texture-controlled growth of ZnO thin films and their application for growing aligned ZnO nanowire arrays", Nanotechnology, 20, 085609. https://doi.org/10.1088/0957-4484/20/8/085609
  11. Huang, M.H., Wu, Y.Y., Feick, H., Tran, N., Weber, E. and Yang, P.D. (2001), "Catalytic growth of zinc oxide nanowires by vapor transport", Adv. Mater., 13, 113-116. https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H
  12. Ilican, S., Caglar, Y. and Caglar, M. (2008), "Preparation and characterization of ZnO thin films deposited by sol-gel spin coating method", J. Optoelectron. Adv. Mater., 10(10), 2578-2583.
  13. Oliveira, J.P., Laia, C.T. and Branco, L.C. (2012), "Optimization of Ionic Liquid Film Deposition by Spin and Dip Coating Techniques", J. Maters. Sc. Eng. B, 2(8), 437-441.
  14. Kamaruddin, S.A., Chan, K., Yow, H., Sahdan, M.Z., Saim, H. and Knipp, D. (2010), "Zinc oxide films prepared by sol-gel spin coating technique", Appl. Phys. A. 104, 263-268.
  15. Lin, D., Wu, H. and Pan, W. (2007), "Photoswitches and memories assembled by electrospinning aluminum-doped zinc oxide single nanowires", Adv. Mater. 19, 3968-3972. https://doi.org/10.1002/adma.200602802
  16. Madou, M. (2002), Fundamentals of Microfabrication. The Science of Miniaturization, 2nd ed., CRC Press.
  17. Middleman, S. and Hochberg, A.K. (1993), Process Engineering Analysis in Semiconductor Devices Fabrication, McGraw Hill, P. 313.
  18. Mihi, A., Oca-mtlide, M. and Miguez, H. (2006), "Oriented colloidal-crystal thin films by spin-coating microspheres dispersed in volatile media", Adv. Mat., 18, 2244. https://doi.org/10.1002/adma.200600555
  19. Mitzi, D.B., Kosbar, L.L., Murray, C.E., Copel, M. and Atzali, A. (2004), "High mobility ultrathin semiconducting films prepared by spin coating", Nature, 428, 299-303. https://doi.org/10.1038/nature02389
  20. Meyerhofer, D. (1978), "Key stages in spin coating process", J. Appl. Phys., 49, 3993. https://doi.org/10.1063/1.325357
  21. Niranjan, S., Parija, B. and Panigrahi, S. (2009), "Fundamental understanding and modeling of spin coating process: A review", Indian J. Phys., 83(4), 493-502. https://doi.org/10.1007/s12648-009-0009-z
  22. Pan, Z.W., Dai, Z.R. and Wang, Z.L. (2001), "Nanobelts of semiconducting oxides", Science, 291, 1947-1949. https://doi.org/10.1126/science.1058120
  23. Panigrahi, S., Waugh, S., Rout, S.K., Hassan, A.K. and Ray, A.K. (2008), "Study of spin coated organic thin film under spectrophotometer", J. Mater. Res., 28, 858.
  24. Peeters, T. and Remoortere, B.V. (2008), "Parameters of the spin coating process", J. Appl. Sci., 46, 685-696.
  25. Schubert, D.W. and Dunkel, T. (2003), "Spin coating from molecular point of view: Its concentration regimes, Influence of molar of molar mass and distribution", Mater. Res. Innov., 7, 314. https://doi.org/10.1007/s10019-003-0270-2
  26. Schuler, A.C. (1999), Electronics Principles and Applications. Fifth edition; McGraw-Hill, New York.
  27. Schwartz, L.W. and Roy, R.V. (2004), "Theoretical and numerical results for spin coating of viscous liquids", Phys. Fluid, 16, 569. https://doi.org/10.1063/1.1637353
  28. Spin Coating Machine (2013), Available @: http://www.holmarc.com/spin_coating_machine.html., Retrieve on February 18.
  29. Sui, X.M., Shao, C.L. and Liu, Y.C. (2005), "White-light emission of polyvinyl alcohol/ZnO hybrid nanofibers prepared by electrospinning", Appl. Phys. Lett., 87, 113-115.
  30. Swati, S., Tran, A., Nalamasu, O. and Dutta, P.S. (2006), "Spin-coated ZnO thin films using ZnO Nano-colloid", J. Electron. Mater., 35(6), 9965-9968.
  31. Wu, J.J., Wen, H.I. Tseng, C.H. and Liu, S.C. (2004), "Well-aligned ZnO nanorods via hydrogen treatment of ZnO films", Adv. Funct. Mater. 14, 806-810. https://doi.org/10.1002/adfm.200305092
  32. Xu, S. and Wang, Z.L. (2011), "One-dimensional ZnO nanostructures: solution growth and functional properties", Nano Res., 4(11), 1013-1098 https://doi.org/10.1007/s12274-011-0160-7
  33. Xu, C.K., Xu, G.D., Liu, Y.K. and Wang, G.H. (2002), "A simple and novel route for the preparationof ZnO nanorods", Solid State Commun., 122, 175-179. https://doi.org/10.1016/S0038-1098(02)00114-X
  34. Vayssieres, L., Keis, K., Lindquist, S.E. and Hagfeldt, A. (2001), "Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO", J. Phys. Chem. B, 105, 3350-3352. https://doi.org/10.1021/jp010026s
  35. Verges, M.A., Mifsud, A. and Serna, C.J. (1990), "Formation of rodlike zinc-oxide microcrystals in homogeneous solutions", J. Chem. Soc. Faraday Trans., 86, 959-963. https://doi.org/10.1039/ft9908600959
  36. Wang, Z.L. (2008), "Towards self-powered nanosystems: From nanogenerators to nanopiezotronics", Adv. Funct. Mater. 18, 3553-3567. https://doi.org/10.1002/adfm.200800541
  37. Washo, B.D. (1977), "Rheology and modeling of the spin coating process", IBM J. Res. Develop., 190-198.
  38. Yuan, H. and Zhang, Y. (2004), "Preparation of well-aligned ZnO whiskers on glass substrate by atmospheric MOCVD", J. Cryst. Growth., 263, 119-124. https://doi.org/10.1016/j.jcrysgro.2003.11.084
  39. Zhang, H., Yang, D.R., Ma, X.Y., Du, N., Wu, J.B. and Que, D.L. (2006), "Straight and thin ZnO nanorods: Hectogram-scale synthesis at low temperature and cathodoluminescence", J. Phys. Chem. B, 110, 827-830. https://doi.org/10.1021/jp055351k

Cited by

  1. Cobalt Oxide (CoOx) as an Efficient Hole-Extracting Layer for High-Performance Inverted Planar Perovskite Solar Cells vol.8, pp.49, 2016, https://doi.org/10.1021/acsami.6b10803
  2. A Review of Speckle Pattern Fabrication and Assessment for Digital Image Correlation vol.57, pp.8, 2017, https://doi.org/10.1007/s11340-017-0283-1
  3. Sol-gel chemistry, templating and spin-coating deposition: A combined approach to control in a simple way the porosity of inorganic thin films/coatings vol.248, 2017, https://doi.org/10.1016/j.micromeso.2017.04.017
  4. A disposable immunosensor using ITO based electrode modified by a star-shaped polymer for analysis of tumor suppressor protein p53 in human serum vol.107, 2018, https://doi.org/10.1016/j.bios.2018.02.017
  5. Spin coating formation of self-assembled ferroelectric β-glycine films vol.496, pp.1, 2016, https://doi.org/10.1080/00150193.2016.1157434
  6. Indium tin oxide (ITO): A promising material in biosensing technology vol.97, 2017, https://doi.org/10.1016/j.trac.2017.09.021
  7. Fabrication of Porous Polytetrafluoroethylene thin Film from Powder Dispersion-solution for Energy Nanogenerator Applications vol.24, pp.2, 2017, https://doi.org/10.4150/KPMI.2017.24.2.102
  8. Modification of Poly(dimethylsiloxane) by Mesostructured Siliceous Films for Constructing Protein-Interactive Surfaces vol.16, pp.0, 2018, https://doi.org/10.1380/ejssnt.2018.41
  9. HYDRO- AND OLEOPHOBIC COATINGS BASED ON POLYVINYL ALCOHOL AND SILICON DIOXIDE NANOPARTICLES vol.62, pp.3, 2018, https://doi.org/10.29235/1561-8323-2018-62-3-298-303
  10. Aligned Droplet Patterns by Dewetting of Polymer Bilayers vol.51, pp.15, 2013, https://doi.org/10.1021/acs.macromol.8b00620
  11. Photocatalytic performance of rod-shaped copper oxides prepared by spin coating vol.14, pp.3, 2013, https://doi.org/10.1049/mnl.2018.5447
  12. Promote Localized Surface Plasmonic Sensor Performance via Spin-Coating Graphene Flakes over Au Nano-Disk Array vol.6, pp.2, 2019, https://doi.org/10.3390/photonics6020057
  13. Effect of Preparation and Reduction on Specific Surface Electrical Resistance of Thin Films Obtained from Graphene Oxide Dispersion vol.10, pp.5, 2013, https://doi.org/10.1134/s2075113319050125
  14. A Modified Equation for Thickness of the Film Fabricated by Spin Coating vol.11, pp.9, 2019, https://doi.org/10.3390/sym11091183
  15. Direct Oligosaccharide Profiling Using Thin-Layer Chromatography Coupled with Ionic Liquid-Stabilized Nanomatrix-Assisted Laser Desorption-Ionization Mass Spectrometry vol.91, pp.18, 2013, https://doi.org/10.1021/acs.analchem.9b01241
  16. Mathematical model for thickness of off‐center spin‐coated polymer films vol.137, pp.6, 2013, https://doi.org/10.1002/app.48356
  17. Spin-Coated Polysaccharide-Based Multilayered Freestanding Films with Adhesive and Bioactive Moieties vol.25, pp.4, 2020, https://doi.org/10.3390/molecules25040840
  18. Morphological and Structural Properties of Sol-Gel Derived ZnO Thin Films Spin-Coated on Different Substrates vol.301, pp.None, 2020, https://doi.org/10.4028/www.scientific.net/ssp.301.35
  19. Surface Modifications for Implants Lifetime extension: An Overview of Sol-Gel Coatings vol.10, pp.6, 2013, https://doi.org/10.3390/coatings10060589
  20. Fabrication of a Silica-Silica Nanoparticle Monolayer Array Nanocomposite Film on an Anodic Aluminum Oxide Substrate and Its Optical and Tribological Properties vol.12, pp.24, 2013, https://doi.org/10.1021/acsami.0c03436
  21. Elemental, Optical, and Electrochemical Study of CH3NH3PbI3 Perovskite-Based Hole Transport Layer-Free Photodiode vol.54, pp.9, 2013, https://doi.org/10.1134/s1063782620090055
  22. Sol-Gel-Derived Bioactive and Antibacterial Multi-Component Thin Films by the Spin-Coating Technique vol.6, pp.10, 2020, https://doi.org/10.1021/acsbiomaterials.0c01140
  23. Fabrication and characterization of ultrathin spin-coated poly(L-lactic acid) films suitable for cell attachment and curcumin loading vol.15, pp.6, 2013, https://doi.org/10.1088/1748-605x/aba40a
  24. Spin coating method improved the performance characteristics of films obtained from poly(lactic acid) and cellulose nanocrystals vol.26, pp.None, 2013, https://doi.org/10.1016/j.susmat.2020.e00212
  25. Electroforming-free flexible organic resistive random access memory based on a nanocomposite of poly(3-hexylthiophene-2,5-diyl) and orange dye with a low threshold voltage vol.35, pp.12, 2020, https://doi.org/10.1088/1361-6641/abbaf0
  26. Spin-speed independent thickness and molecular adsorption behaviour of polyelectrolyte multilayers vol.93, pp.2, 2021, https://doi.org/10.1051/epjap/2021200294
  27. Effect of Spin Coating Parameters on the Electrochemical Properties of Ruthenium Oxide Thin Films vol.2, pp.1, 2013, https://doi.org/10.3390/electrochem2010008
  28. Janus Particle Preparation through UV-Induced Partial Photodegradation of Spin-Coated Particle Films vol.37, pp.27, 2013, https://doi.org/10.1021/acs.langmuir.1c00848
  29. Laser-assisted fabrication and modification of copper and zinc oxide nanostructures in liquids for photovoltaic applications vol.554, pp.None, 2021, https://doi.org/10.1016/j.apsusc.2021.149570
  30. Fabrication by Spin-Coating and Optical Characterization of Poly(styrene-co-acrylonitrile) Thin Films vol.11, pp.9, 2013, https://doi.org/10.3390/coatings11091015
  31. Electrochromic Behavior of Vanadium Pentoxide Thin Films Prepared by a Sol-Gel Spin Coating Process vol.218, pp.19, 2013, https://doi.org/10.1002/pssa.202100282
  32. Near total reflection x-ray photoelectron spectroscopy: quantifying chemistry at solid/liquid and solid/solid interfaces vol.54, pp.46, 2013, https://doi.org/10.1088/1361-6463/ac2067
  33. Recent advances in efficient emissive materials-based OLED applications: a review vol.56, pp.34, 2013, https://doi.org/10.1007/s10853-021-06503-y
  34. Nitrocellulose Membrane for Paper-based Biosensor vol.26, pp.None, 2013, https://doi.org/10.1016/j.apmt.2021.101305