Dog Sperm Cryopreservation Using Glucose in Glycerol-free TRIS: Glucose Concentration, Exposure Time

Glycerol-free TRIS 배지내 glucose를 이용한 개 정자 동결: 포도당 농도, 노출시간

  • Yu, Il-Jeoung (Department of Theriogenology and Reproductive Biotechnologies, College of Veterinary Medicine and Bio-safety Research Institute, Chonbuk National University)
  • Accepted : 2013.12.02
  • Published : 2013.12.31

Abstract

The aim of the present study was to develop glycerol-free TRIS extender using glucose for dog sperm cryopreservation. We determined the appropriate concentration of glucose in glycerol-free TRIS and the exposure time in glycerol-free TRIS containing 0.3 M glucose at $4^{\circ}C$. Ejaculates of six dog sperm were cooled in glycerol-free TRIS through $4^{\circ}C$ for 100 min, cooled at $4^{\circ}C$ in TRIS with different glucose concentrations 0 M, 0.04 M, 0.1 M, 0.2 M and 0.3 M, respectively for 30 min followed by cryopreservation. After thawing at $37^{\circ}C$ for 25 sec, membrane and acrosome integrities of dog sperm were evaluated. In addition, the effect of exposure time (10, 30, 50 and 70 min) of sperm to glycerol-free TRIS containing 0.3 M glucose at $4^{\circ}C$ on progressive motility, viability, and DNA integrity following sperm cryopreservation was studied. Membrane integrity and acrosome integrity were assessed by 6-carboxyfluoresceindiacetate (6-CFDA)/propidium iodide (PI) fluorescent staining and Pisum sativum agglutinin conjugated to fluorescein isothiocyanate, respectively. DNA integrity was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling, using flow cytometry. Sperm frozen in glycerol-free TRIS supplemented with 0.2 M or 0.3 M glucose have an intact plasma membrane (CFDA+/PI-) after cryopreservation than sperm frozen in the extenders with lower glucose concentrations (p<0.05). Acrosome integrity was significantly higher in the 0.3 M group than less than 0.1 M groups (p<0.05). The sperm DNA fragmentation index did not differ according to exposure time, although progressive motility was significantly higher in the 50 min exposure group than the other groups (p<0.05). These results indicate that cryopreservation of dog sperm is feasible and yields more motile sperm following freezing and thawing in glycerol-free TRIS containing 0.3 M glucose with the exposure time for 50 min at $4^{\circ}C$.

개 정액 동결을 위한 glucose가 첨가된 glycerol-free TRIS 희석액을 개발하기 위해 glycerol-free TRIS내 알맞은 glucose의 양과 0.3 M glucose가 첨가된 glycerol-free TRIS내 정자의 적정 노출시간을 조사하였다. 여섯 마리의 수캐의 사출액을 0.04 M glucose가 첨가된 glycerol-free TRIS내에서 $4^{\circ}C$까지 100분 동안 냉각한 후 서로 다른 glucose농도 (0 M, 0,04 M, 0.1 M, 0.2 M, 0.3 M)의 glycerol-free TRIS에서 30분 동안 냉각하여 동결하였다. $37^{\circ}C$에서 25 초 동안 융해한 후 정자의 막 고유성과 첨단체 고유성을 검사하였다. 부가적으로 0.3 M glucose가 첨가된 glycerol-free TRIS내 정자의 적정 노출시간에 따른 정자의 동결 후 운동성, 생존성, DNA 고유성을 확인하였다. 막 고유성과 첨단체 고유성은 각각 6-carboxyfluoresceindiacetate(6-CFDA)/propidium iodide(PI) fluorescent staining와 Pisum sativum agglutinin conjugated-fluorescein isothiocyanate 방법에 의해 검사하였다. DNA 고유성은 terminal deoxynucleotidyl transferase dUTP nick end labeling로 염색하여 flow cytometry로 검사하였다. 0.2 M 또는 0.3 M glucose가 첨가된 glycerol-free TRIS에서 동결된 정자가 낮은 농도의 glucose가 첨가된 희석액에서 동결된 정자보다 막 고유성이 높게 나타났으며(p<0.05), 첨단체 고유성은 0.3 M 군에서 높게 나타났다(p<0.05). 운동성은 50 분 군에서 높게 나타났으나(p<0.05), DNA fragmentation index는 노출시간에 따라 차이가 없었다. 본 연구 결과 개정자가 0.3 M glucose가 첨가된 glycerol-free TRIS에서 $4^{\circ}C$, 50 분간 냉각 후 동결과 융해 후 더 높은 생존성을 나타냈다.

Keywords

References

  1. Aboagla EM, Terada T. Trehalose-enhanced fluidity of the goat sperm membranes and its protection during freezing. Biol Reprod 2003; 69: 1245-1250. https://doi.org/10.1095/biolreprod.103.017889
  2. Asien EG, Medina VH, Venturino A. Cryopreservation and post-thawed fertility of ram semen frozen in different trehalose concentrations. Theriogenology 2002; 57: 1801-1808. https://doi.org/10.1016/S0093-691X(02)00653-2
  3. Arenas Núñez MA, Juárez-Mosqueda MD, Gutiérrez-Pérez O, Anzaldúa Arce SR, Izquierdo AC, Rodríguez RM, Trujillo Ortega ME. Glycerol decreases the integrity of the perinuclear theca in boar sperm. Zygote 2013; 21: 172-177. https://doi.org/10.1017/S0967199411000785
  4. Bailey JL, Lessard C, Jacques J, Breque C, Dobrinski I, Zeng W, Galantino-Homer HL. Cryopreservation of boar semen and its future importance to the industry. Theriogenology 2008; 70: 1251-1259. https://doi.org/10.1016/j.theriogenology.2008.06.014
  5. Gomez-Fernandez J, Gomez-Izquierdo E, Tomas C, Moce E, de Mercado E. Effect of different monosaccharides and disaccharides on boar sperm quality after cryopreservation. Anim Reprod Sci 2012; 33: 109-116.
  6. Fuller BJ. Cryoprotectants: the essential antifreezes to protect life in the frozen state. CryoLetters 2004; 25: 375-388.
  7. Hermansson U, Linde Forsberg G. Freezing of stored, chilled dog spermatozoa, Theriogenology 2006; 65: 584-593. https://doi.org/10.1016/j.theriogenology.2005.06.004
  8. Holt WV. Basic aspects of frozen storage of semen. Anim Reprod Sci 2000; 62: 3-22. https://doi.org/10.1016/S0378-4320(00)00152-4
  9. Koshimoto C, Gamliel E, Mazur P. Effect of osmolality and oxygen tension on the survival of mouse sperm frozen to various temperatures in various concentrations of glycerol and raffinose. Cryobiology 2000; 41: 204-231. https://doi.org/10.1006/cryo.2000.2281
  10. Koshimoto C, Mazur P. The effect of the osmolality of sugar-containing media, the type of sugar, and the mass and molar concentration of sugar on the survival of frozenthawed mouse sperm. Cryobiology 2002; 45: 80-90. https://doi.org/10.1016/S0011-2240(02)00108-6
  11. Malo C, Gil L, Gonzalez N, Cano R, de Blas L, Espinosa E. Comparing sugar type supplementation for cryopreservation of boar semen in egg yolk based extender. Cryobiology 2010; 21: 17-21.
  12. Marcias Garcia B, Ortega Ferrusola C, Aparicio IM, Miro- Moran A, Morillo Rodriguez A, Gallardo Bolanos JM, Gonzalez Fernandez L, Balao da Silva CM, Rodriguez Martinez H, Tapia JA, Pena FJ. Toxicity of glycerol for the stallion spermatozoa: effects on membrane integrity and cytoskeleton, lipid peroxidation and mitochondria membrane potential. Theriogenology 2012; 77: 1280-1289. https://doi.org/10.1016/j.theriogenology.2011.10.033
  13. Merino O, Risopatrón J, Sánchez R, Isachenko E, Figueroa E, Isachenko I, Fish (Oncorhynchus mykiss) spermatozoa cryoprotectant-free vitrification: stability of mitochondrion as criterion of effectiveness. Anim Reprod Sci 2011; 124: 125-131. https://doi.org/10.1016/j.anireprosci.2011.02.023
  14. Naing SW, Wahid H, Mohd Azam K, Rosnina Y, Zuki AB, Kazhal S, Bukar MM, Thein M, Kyaw T, San MM. Effect of sugars on characteristics of Boer goat semen after cryopreservation. Anim Reprod Sci 2010; 122: 23-28. https://doi.org/10.1016/j.anireprosci.2010.06.006
  15. Paasch U, Sharma RK, Gupta AK, Grunewald S, Mascha EJ, Thomas AJ, Glander HJ, Agarwal A. Cryopreservation and thawing is associated with varying extent of activation of apoptotic machinery in subsets of ejaculated human spermatozoa. Biol Reprod 2004; 71: 1828-1837. https://doi.org/10.1095/biolreprod.103.025627
  16. Peris SL, Bilodeau JF, Duflour M, Bailey JL. Impact of cryopreservation and reactive oxygen species on DNA integrity, lipid peroxidation, and functional parameters in ram sperm. Mol Reprod Dev 2007; 74: 878-892. https://doi.org/10.1002/mrd.20686
  17. Ricci C, Perticarari S, Fragonas E, Giolo E, Canova S, Pozzobon C, Guaschino S, Presani G. Apoptosis in human sperm: its correlation with semen quality and the presence of leukocytes. Hum Reprod 2002; 17: 2665-2672. https://doi.org/10.1093/humrep/17.10.2665
  18. Rota A, Milani C, Cabianca G, Martini M. Comparison between glycerol and ethylene glycol for dog semen cryopreservation. Theriogenology 2006; 65: 1848-1858. https://doi.org/10.1016/j.theriogenology.2005.10.015
  19. Rota B, Ström B, Linde-Forsberg C, Rodriguez-Martinez H, Effects of equex STM paste on viability of frozen-thawed dog spermatozoa during in vitro incubation at $38{^{\circ}C}$. Theriogenology 1997; 47: 1093-1101. https://doi.org/10.1016/S0093-691X(97)00066-6
  20. Sanchez R, Risopatron J, Schulz M, Villegas J, Isanchenko V, Kreinberg R, Isachenko E. Canine sperm vitrification with sucrose: effect on sperm function. Angrologia 2011; 43: 233-241.
  21. Sariozkan S, Bucak MN, Canturk F, Ozdamar S, Yay A, Tuncer PB, Ozcan S, Dorgucu N, Caner Y. The effect of different sugars on motility, morphology and DNA damage during the liquid storage of rat epididymal sperm at 4oC. Cryobiology 2012; 65: 93-97. https://doi.org/10.1016/j.cryobiol.2012.05.007
  22. Shamsi MB, Imam SN, Dada R. Sperm DNA integrity assays: diagnostic and prognostic challenges and implications in management of infertility. J Assist Reprod Genet 2011; 28:1073-1085. https://doi.org/10.1007/s10815-011-9631-8
  23. Strauss G, Shcurtenberger P, Hauser H. The interaction of saccharides with lipid layer vesicles: stabilization during freeze-thawing and freezing-drying. Biochim Biophys Acta 1986; 858: 169-180. https://doi.org/10.1016/0005-2736(86)90303-2
  24. Zribi N, Chakroun NF, Abdallah FB, Elleuch H, Sellami A, Gargouri J, Rebai T, Fahfakh F, Keskes LA. Effect of freezing-thawing process and quercetin on human sperm survival and DNA integrity. Cryobiology 2012; 65: 326-331. https://doi.org/10.1016/j.cryobiol.2012.09.003
  25. Yu I, Leibo SP. Recovery of motile, membrane-intact spermatozoa from canine epididymides stored for 8 days at $4{^{\circ}C}$. Theriogenology 2002; 57: 1179-1190. https://doi.org/10.1016/S0093-691X(01)00711-7
  26. Watson PF. The causes of reduced fertility with cryopreserved semen. Anim Reprod Sci 2000; 60-61: 481-492. https://doi.org/10.1016/S0378-4320(00)00099-3