DOI QR코드

DOI QR Code

Characteristics of Coal Water Fuel by Various Drying Coals, Surfactants and Particle Size Distribution Using Low Rank Coal

건조된 저등급석탄과 첨가제 및 입자크기에 대한 석탄-물 혼합연료(CWF)의 특성

  • Kim, Tae Joo (Clean Fuel Center, Korea Institute of Energy Research) ;
  • Kim, Sang Do (Clean Fuel Center, Korea Institute of Energy Research) ;
  • Lim, Jeong Hwan (Clean Fuel Center, Korea Institute of Energy Research) ;
  • Rhee, Young Woo (Department of Chemical Engineering, Chungnam National University) ;
  • Lee, Si Hyun (Clean Fuel Center, Korea Institute of Energy Research)
  • 김태주 (한국에너지기술연구원 청정연료연구단) ;
  • 김상도 (한국에너지기술연구원 청정연료연구단) ;
  • 임정환 (한국에너지기술연구원 청정연료연구단) ;
  • 이영우 (충남대학교 화학공학과) ;
  • 이시훈 (한국에너지기술연구원 청정연료연구단)
  • Received : 2013.08.14
  • Accepted : 2013.09.17
  • Published : 2013.12.31

Abstract

In this study, in order to increase solid content of coal water fuel (CWF), various experimental parameters (i.e., coal type, additive, particle size distribution, drying method) were evaluated. To investigate the drying method, specimen is compared to using flash dry, fluidized bed dry and oil deposit stabilized coal. Difference of the solid content between low rank coal and high rank coal in this case indicate that high rank coal exhibits more higher than 20% of the solid cotent. And specimen for dispersibility was prepared by using dispersing agent of 4 types. As a result, using the dispersing agent was shown 5% higher in sold content than the case of not using the dispersing agent. Efficiency of CWF was improved by using fine coal of 80% in the particle size distribution of coal. Result of CWF using drying methods of 3 types, oil deposit stabilized (ODS) coal dried and stabilized was effective 12% higher in sold content than raw coal.

본 연구에서는 석탄 종류, 저등급석탄으로부터 첨가제의 종류, 입도분포 및 건조 방법에 따른 석탄-물 혼합연료(coal water fuel, CWF)의 고체함유량을 높이고자 하였다. 건조 방법에는 열풍 건조 방법(flash drying, FD), 유동층 건조 방법(fluidized bed, FB), 유중 건조 방법(oil deposit stabilized, ODS)을 사용하였다. 석탄 종류에 의해서 고체함유량 차이는 최대 20% 이상 보였다. 또한, CWF을 제조할 때 넣어주는 첨가제의 종류를 다르게 하여 실험한 결과 첨가제에 의해서 5%까지 효율을 더 높일 수 있었다. 석탄의 입도분포는 $75{\mu}m$ 이하의 미분탄이 80% 함유되어야 CWF의 성능이 향상되는 것을 관찰하였다. 3가지 건조 방법을 활용하여 CWF를 제조해본 결과, 안정화시킨 유중 건조 석탄이 원탄에 비하여 12% 정도 더 높은 고체함유량을 갖는 CWF를 제조할 수 있는 것을 알 수 있었다.

Keywords

References

  1. Chen, P., "Study on Integrated Classification System for Chinese Coal," Fuel Proc. Technol., 62, 77-87 (2000). https://doi.org/10.1016/S0378-3820(99)00115-0
  2. Li, S., Tang, D., Xu, H., and Yang, Z., "Advanced Characterization of Physical Properties of Coals with Different Coal Structures by Nuclear Magnetic Resonance and X-ray Computed Tomography," Comput. Geo., 48, 220-227 (2012). https://doi.org/10.1016/j.cageo.2012.01.004
  3. Bielowicz, B., "A new Technological Classification of Lowank Coal on the Basis of Polish Deposits," Fuel Proc. Technol., 96, 497-510 (2012).
  4. Umar, D. F., Usui, H., Komoda, Y., and Alim, M., "Effect of Dispersing and Stabilizing Additives on Rheological Characteristics of the Upgraded Brown Coal Water Mixture," Fuel Proc. Technol., 90, 611-615 (2009). https://doi.org/10.1016/j.fuproc.2008.12.013
  5. Boylu, F., Dincer, H., and Atesok, G., "The Effect of Carboxymethyl Cellulose (CMC) on the Stability of Coal-water Slurries," Fuel Proc. Technol., 84, 315-319 (2005).
  6. Ahmed, S. F., and Hasan, A. R., "Rheology of Low-rank Coal-water Slurries at Both High and Low Shear Rates," Fuel Proc. Technol., 72, 763-769 (1993).
  7. Fedir, W., Stanley, R., Siemon, E., and Dennis, E., "Rheology of Victorian Brown Coal Slurries," Fuel Proc. Technol., 66, 1299-1304 (1987).
  8. Shukla, S. C., Kukade, S., Mandal, S. K., and Kundu, G., "Coal-oil-water Multiphase Fuel," Fuel Proc. Technol., 87, 3428-3432 (2008).
  9. Aktas, Z., and Woodburn, E. T., "Effect of Addition of Surface Active Agent on the Viscosity of a High Concentration Slurry of a Low-rank British Coal in Water," Fuel Proc. Technol., 62, 1-15 (2000). https://doi.org/10.1016/S0378-3820(99)00059-4
  10. Kim, S. D., Lee, S. H., Rhim, Y. J., Choi, H. K., Lim, J. H., Chun, D. H., and Yoo, J. H., "Dry Characteristic of High Moisture Coal Using a Flash Dryer," Korean Chem. Eng. Res., 50, 106-111 (2012). https://doi.org/10.9713/kcer.2012.50.1.106
  11. Zhenfu, L., and Qingru, C., "Dry beneficiation Technology of Coal with an Air Dense-medium Fluidized Bed," Int. J. Miner. Proc., 63, 167-175 (2001). https://doi.org/10.1016/S0301-7516(01)00049-7
  12. Kim, H. S., Matsushita, Y., Oomori, M., Harada, T., Miyawaki, J., Yoon, S. H., and Mochida, I., "Fluidized Bed Drying of Loy Yang Brown Coal with Variation of Temperature, Relative Humidity, Fluidization Velocity and Formulation of its Drying Rate," Fuel Proc. Technol., 105, 415-424 (2013).
  13. Umar, D. F., Usui, H., and Daulay, B., "Change of Combustion Characteristics of Indonesian Low Rank Coal due to Upgraded Brown Coal Process," Fuel Proc. Technol., 87, 1007-1011 (2006). https://doi.org/10.1016/j.fuproc.2006.07.010
  14. Roh, N. S., Shin, D. H., Kim, D. C., and Kim, J. D., "Rheological Behaviour of Coal-water Mixures," Fuel Proc. Technol., 74, 1220-1225 (1995).
  15. Boylu, F., Dincer, H., and Atesok, G., "Effcet of Chemicals on the Viscosity and Stability of Coal-water Slurries," Int. J. Miner. Proc., 70, 41-51 (2003). https://doi.org/10.1016/S0301-7516(02)00149-7
  16. Qiu, X. Q., Zhou, M. S., Yang D. G., Lou, H. M., Ouyang, X. P., and Pang, Y. X., "Evaluation of Sulphonated Acetone- Formaldehyde (SAF) Used in Coal Water Slurries Prepared from Different Coals," Fuel Proc. Technol., 86, 1439-1445 (2007).
  17. Ma, S., Zhao, P., Guo, Y., Zhong, L., and Wang, Y., "Synthesis, Characterization and Application of Polycarboxylate Additive for Coal Water Slurry," Fuel Proc. Technol., 111, 648-652 (2013).
  18. Das, D., Dash, U., Meher, J., and Misra, P. K., "Improving Stability of Concentrated Coal-water Slurry Using Mixture of a Natural and Synthetic Surfactants," Fuel Proc. Technol., 113, 41-51 (2013). https://doi.org/10.1016/j.fuproc.2013.02.021
  19. Aktas, Z., and Woodburn, E. T., "Effect of Addition of Surface Active Agent on the Viscosity of a High Concentration Slurry of a Low-rank British Coal in Water," Fuel Proc. Technol., 62, 1-15 (2000). https://doi.org/10.1016/S0378-3820(99)00059-4
  20. Boylu, F., Dincer, H., and Atesok, G., "Effcet of Coal Particle Size Distribution, Volume Fraction and Rank on the Rheology of Coal-water Slurries," Fuel Proc. Technol., 85, 241-250 (2004). https://doi.org/10.1016/S0378-3820(03)00198-X
  21. Sonibare, O. O., Haeger, T., and Foley, S. F., "Structural Characterization of Nigerian Coals by X-ray Diffraction, Raman and FTIR Spectroscopy," Fuel Proc. Technol., 35, 5347-5353 (2010).
  22. Gezici, O., Demir, I., Demircan, A., Unlu, N., and Karaarslan, M., "Subtractive-FTIR Spectroscopy to Characterize Organic Matter in Lignite Samples from Different Depths," Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 96, 63-69 (2012). https://doi.org/10.1016/j.saa.2012.05.004
  23. Robertson, S. D., Cunliffe, F., Fowler, C. S., and Richmond, I. J., "Rapid Measure of Moisture in Coal and Total Solids in Coal Slurries by Low-resolution Proton Nuclear Magnetic Resonance," Fuel Proc. Technol., 58, 770-774 (1979).

Cited by

  1. Drying Characteristics of High Moisture Low Rank Coal using a Steam Fluidized-bed Dryer vol.20, pp.3, 2014, https://doi.org/10.7464/ksct.2014.20.3.321