DOI QR코드

DOI QR Code

Reaction Characteristics of Elemental and Oxidized Mercury with Fly Ash Components

비산재 성분과 원소 및 산화수은의 반응특성

  • Lee, Sang-Sup (Department of Environmental Engineering, Chungbuk National University) ;
  • Kim, Kwang-Yul (Department of Environmental Engineering, Chungbuk National University) ;
  • Oh, Kwang-Joong (Department of Environmental Engineering, Pusan National University) ;
  • Jeon, Jun-Min (Green Environmental Center, Suncheon First College) ;
  • Kang, Dong-Chang (Department of Environmental Engineering, Chungbuk National University)
  • 이상섭 (충북대학교 환경공학과) ;
  • 김광렬 (충북대학교 환경공학과) ;
  • 오광중 (부산대학교 환경공학과) ;
  • 전준민 (순천제일대학 그린환경종합센터) ;
  • 강동창 (충북대학교 환경공학과)
  • Received : 2013.08.01
  • Accepted : 2013.10.04
  • Published : 2013.12.31

Abstract

Fly ash has capacity to oxidize or adsorb mercury in a flue gas. Mercury oxidation and adsorption efficiencies of fly ash vary depending on the properties of fly ash. This study was designed to understand reaction characteristics of mercury with fly ash components. The fly ash components were tested to determine their oxidation and adsorption capabilities for elemental mercury and oxidized mercury. A sample was synthesized with fly ash components and tested. The test results were compared with those of the fly ash sample obtained from a coal-fired power plant. $Fe_2O_3$, CuO and carbon black showed higher oxidation or adsorption efficiency for elemental mercury while CaO, MgO, CuO and carbon black showed higher adsorption efficiency for mercury chloride. In addition, the synthesized sample showed comparable mercury oxidation and adsorption efficiencies to the fly ash sample.

배기가스 중에서 비산재는 수은을 산화하거나 흡착하는 능력을 지닌다. 비산재의 수은 산화 및 흡착 효율은 비산재가 가지는 특성에 따라 변하여 일정하지 않다. 본 연구는 비산재 성분과 수은의 반응특성을 이해하기 위하여 비산재 성분물질이 원소수은과 산화수은에 대해 가지는 산화 및 흡착 능력을 평가하였다. 그리고 비산재 시료의 조성에 맞게 합성한 비산재를 시험하였고, 석탄화력발전소에서 수령한 비산재 시료의 결과와 비교하였다. 원소수은에 대해서는 미세탄소분말, 산화구리, 산화철이 높은 산화 또는 흡착효율을 보였고, 염화수은에 대해서는 미세탄소분말, 산화칼슘, 산화구리, 산화마그네슘이 높은 효율을 보였다. 그리고 합성비산재는 비산재 시료와 유사한 수은 산화 및 흡착 효율을 보였다.

Keywords

References

  1. Kilgroe, J. D., Sedman, C. B., Srivastava, R. K., Ryan, J. V., Lee, C. W., and Thorneloe, S. A., "Control of Mercury Emissions from Coal-fired Electric Utility Boilers: Interim Report," U.S. Environmental Protection Agency, National Risk Management Research Laboratory (2001).
  2. Gibb, W. H., Clarke, F., and Mehta, A. K., "The Fate of Coal Mercury during Combustion," Fuel Proc. Technol., 65-66, 365-377 (2000). https://doi.org/10.1016/S0378-3820(99)00104-6
  3. Rallo, M., Lopez-Anton, M. A., Perry, R., and Maroto-Valer, M. M., "Mercury Speciation in Gypsums Produced from Flue Gas Desulfurization by Temperature Programmed Decomposition," Fuel, 89, 2157-2159 (2010). https://doi.org/10.1016/j.fuel.2010.03.037
  4. Kang, S. W., Shim, S. H., Jeong, S. H., Jung, J. H., and Lee, S. S., "Mercury Emission Characteristics from Co-combustion of Coal and Sludge," J. Korea Soc. Atmos. Environ., 28, 182-189 (2012). https://doi.org/10.5572/KOSAE.2012.28.2.182
  5. Kolker, A., Senior, C. L., and Quick, J. C., "Mercury in Coal and the Impact of Coal Quality on Mercury Emissions from Combustion Systems," Appl. Geochem., 21, 1821-1836 (2006). https://doi.org/10.1016/j.apgeochem.2006.08.001
  6. Serre, S. D. and Silcox, G. D., "Adsorption of Elemental Mercury on the Residual Carbon in Coal Fly Ash," Ind. Eng. Chem. Res., 39, 1723-1730 (2000). https://doi.org/10.1021/ie990680i
  7. Dunham, G. E., Dewall, R. A., and Senior, C. L., "Fixed-bed Studies of the Interaction between Mercury and Coal Combustion Fly Ash," Fuel Proc. Technol., 82, 197-213 (2003). https://doi.org/10.1016/S0378-3820(03)00070-5
  8. Norton, G. A., Yang, H., Brown, R. C., Laudal, D. L., Dunham, G. E., and Erjavec, J., "Heterogeneous Oxidation of Mercury in Simulated Post Combustion Conditions," Fuel, 82, 107-116 (2003). https://doi.org/10.1016/S0016-2361(02)00254-5
  9. Ghorishi, S. B., Lee, C. W., Jozewicz, W. S., and Kilgroe, J. D., "Effects of Fly Ash Transition Metal Content and Flue gas $HCl/SO_2$ Ratio on Mercury Speciation in Waste Combustion," Environ. Eng. Sci., 22, 221-231 (2005). https://doi.org/10.1089/ees.2005.22.221
  10. Bhardwaj, R., Chen X., and Vidic, R. D., "Impact of Fly Ash Composition on Mercury Speciation in Simulated Flue Gas," J. Air Waste Manage. Assoc., 59, 1331-1338 (2009). https://doi.org/10.3155/1047-3289.59.11.1331
  11. Baltrus, J. P., Wells, A. W., Fauth, D. J., Diehl, J. R., and White, C. M., "Characteristics of Carbon Concentrates from Coal-combustion Fly Ash," Energy Fuels, 15, 455-462 (2001). https://doi.org/10.1021/ef000201o

Cited by

  1. Catalytic Reduction of Oxidized Mercury to Elemental Form by Transition Metals for Hg CEMS vol.20, pp.3, 2014, https://doi.org/10.7464/ksct.2014.20.3.269
  2. Fine Iron Dust Collection by Magnetized Mesh Filters vol.31, pp.2, 2015, https://doi.org/10.5572/KOSAE.2015.31.2.118
  3. Speciation and capture performance of mercury by a hybrid filter in a coal-fired power plant vol.170, 2017, https://doi.org/10.1016/j.coal.2016.10.008