DOI QR코드

DOI QR Code

Synthesis of Lithium Manganese Oxide by Wet Mixing and its Removal Characteristic of Lithium Ion

습식혼합에 의한 리튬망간 산화물의 합성과 리튬이온 제거특성

  • You, Hae-Na (Department of Chemical Engineering, Pukyong National University) ;
  • Lee, Dong-Hwan (Department of Chemistry, Dong Eui University) ;
  • Lee, Min-Gyn (Department of Chemical Engineering, Pukyong National University)
  • Received : 2013.08.02
  • Accepted : 2013.09.25
  • Published : 2013.12.31

Abstract

In this paper, the wet mixing method was introduced to prepare spinel lithium manganese oxide (LMO) with $Li_2CO_3$ and $MnCO_3$. The physical properties of the resulting lithium manganese oxide were characterized by the XRD and SEM. The adsorption properties of LMO for $Li^+$ were investigated by batch methods. The maximum adsorption capacity of lithium was calculated from Langmuir isotherm and found to be 27.25 mg/g. The LMO are found to have a remarkable lithium ion-sieve property with distribution coefficients ($K_d$) in the order of $Ca^{2+}$ < $K^+$ < $Na^+$ < $Mg^{2+}$ < $Li^+$, which is promising in the lithium extraction from seawater.

본 연구에서는 탄산리튬과 탄산망간을 사용하여 습식혼합방법으로 스피넬 리튬망간 산화물(LMO)을 합성하였다. 합성한 리튬망간 산화물의 물리적인 특성은 X-선 회절 분석기(X-ray diffraction, XRD)와 주사전자현미경(scanning electron microscopy, SEM) 사용하여 분석하였다. 회분식 실험을 통해 LMO의 리튬이온에 대한 흡착특성을 살펴보았다. Langmuir 흡착 등온식으로부터 구한 리튬의 최대흡착량은 27.21 mg/g였다. LMO는 뛰어난 리튬 이온체의 특성을 가지고 있었으며, $Ca^{2+}$ < $K^+$ < $Na^+$ < $Mg^{2+}$ < $Li^+$ 순서로 분배계수($K_d$)가 나타나 해수로부터 리튬을 회수하는데 용이할 것으로 사료된다.

Keywords

References

  1. Yoshizuka, K., Fukui. K., and Inouek, A., "Selective Recovery of Lithium from Seawater Using a Novel $MnO_2$ Type Adsorbent," Ars Separatoria Acta, 1, 79-86 (2002).
  2. Tsuruta, T., "Removal and Recovery of Lithium Using Various Microorganisms," J. Biosci. Bioeng., 100, 562-566 (2005). https://doi.org/10.1263/jbb.100.562
  3. Kim, Y. S., In, G., and Choi, J. M., "Chemical Equilibrium and Synergism for Solvent Extraction of Trace Lithium with Thenoyltrifluoroacetone in The Presence of Trioctylphosphine Oxide," Bull. Korean Chem. Soc., 24, 1495-1500 (2003). https://doi.org/10.5012/bkcs.2003.24.10.1495
  4. Seron, A., Benaddi, H,. Beguin, F., Frackowiak, E., Bretelle, J. L., Thiry, M. C., Bandosz, T. J., Jagiello, J., and Schwarz, J. A., "Sorption and Desorption of Lithium Ions from Activated Carbons," Carbon, 34, 481-487 (1996). https://doi.org/10.1016/0008-6223(95)00200-6
  5. Welna, D. T., Stone, D. A., and Allcock, H. R., "Lithium-ion Conductive Polymers as Prospective Membranes for lithium Seawater Batteries," Chem. Mater., 18, 4486-4492 (2006). https://doi.org/10.1021/cm060691j
  6. Kobayashi, T., Yoshimoto, M., and Nakao, K., "Preparation and Characterization of Immobilized Chelate Extractant inPVA Gel Beads for an Efficient Recovery of Copper (II) in Aqueous Solution," Ind. Eng. Chem. Res., 49, 11652-11660 (2010). https://doi.org/10.1021/ie101113s
  7. Navarrete, C. R., Navarrete, G. A., Valenzuela, C. C., Lopez Gonzalez, J. D., and Garcia-Rodriguez, A., "Lithium Adsorption by Acid and Sodium Amberlite," J. Colloid Interf. Sci., 264, 60-66 (2003). https://doi.org/10.1016/S0021-9797(03)00299-6
  8. Navarrete, C. R., Navarrete, G. A., Valenzuela, C. C., Lopez- Gonzalez, J. D., and Garcia-Rodriguez, A., "Study of Lithium Ion Exchange by Two Synthetic Zeolites: Kinetics and Equilibrium," J. Colloid Interface Sci., 306, 345-353 (2007). https://doi.org/10.1016/j.jcis.2006.10.002
  9. Chung, K. S., Lee, J. C., Jeong, J. K., Kim, E. J., and Kin, Y. S., "Recovery of Lithium from Seawater Using Ion-Exchange type Manganese Oxide Adsorbent," J. KSMER, 40, 402-408 (2003).
  10. Kim, M. A., "Preparation of Ion-exchange Type Manganese Oxide Adsorbents and their Lithium Adsorption Properties in Seawater," M. S. Dissertation, University of Yonsei, Seoul, 2006.
  11. Wang, L., Ma, W., Liu, R., Hai, Y. L., and Meng, C. G., "Correlation Between $Li^+$ Adsorption Capacity and The Preparation Conditions of Spinel Lithium Manganese Precursor," Solid State Ion., 177, 1421-1428 (2006). https://doi.org/10.1016/j.ssi.2006.07.019
  12. Zhang, Q. H., Sun, S., Li, S., Jiang, H., and Yu, J. G., "Adsorption of Lithium Ions on Novel Nanocrystal $MnO_2$," Chem. Eng. Sci., 62, 4869-4874 (2007). https://doi.org/10.1016/j.ces.2007.01.016
  13. Subramania, A., Angayarkanni, N., and Vasudevan, T., "Effect of PVA with Various Combustion Fuels in Sol-gel Thermolysis Process for The Synthesis of $LiMn_2O_4$ Nanoparticles for Li-ion Batteries," Mater. Chem. Phys., 102, 19-23 (2007). https://doi.org/10.1016/j.matchemphys.2006.10.004
  14. Shi, X., Zhou, D., Zhang, Z., Yu, L., Xu, H., Chen, B., and Yang, X., "Synthesis and Properties of $Li_{1.6}Mn_{1.6}O_4$ and Its Adsorption Application," Hydrometallurgy, 110, 99-106 (2011). https://doi.org/10.1016/j.hydromet.2011.09.004
  15. Wang, L., Meng, C. G., and Ma, W., "Study on $Li^+$ Uptake by Lithium Ion-sieve via The pH Technique," Colloids Surf. A: Physicochem. Eng. Asp., 334, 34-39 (2009). https://doi.org/10.1016/j.colsurfa.2008.09.050
  16. Lee, M. G., Kam, S. K., and Suh, K. H., "Adsorption Of Nondegradable Eosin Y by Activated Carbon," J. Environ. Sci., 21, 623-631 (2012).
  17. Liu. Y., "Some Consideration on The Langmuir Isotherm Equation," Colloids Surf. A: Physicochem. Eng. Asp., 274, 34-36 (2006). https://doi.org/10.1016/j.colsurfa.2005.08.029
  18. Sekar, M., Sakthi, V., and Rengaraj, S., "Kinetics and Equilibrium Adsorption Study of Lead (II) onto Activated Carbon Prepared from Coconut Shell," J. Colloid Interface Sci., 279, 307-313 (2004). https://doi.org/10.1016/j.jcis.2004.06.042

Cited by

  1. Adsorption Characteristics of Lithium Ions from Aqueous Solution using a Novel Adsorbent SAN-LMO Beads vol.24, pp.5, 2015, https://doi.org/10.5322/JESI.2015.24.5.641
  2. Preparation of PVC-LMO Bead with Dioxane Solvent and Adsorptive Properties of Lithium Ions vol.23, pp.7, 2014, https://doi.org/10.5322/JESI.2014.23.7.1289
  3. Breakthrough Characteristics for Lithium Ions Adsorption in Fixed-bed Column Packed with Activated Carbon by Modified with Nitric Acid vol.23, pp.6, 2014, https://doi.org/10.5322/JESI.2014.23.6.1143
  4. Preparation of a Novel PU-LMO Adsorbent by Immobilization of LMO on Polyurethane Foam for Recovery of Lithium Ions vol.20, pp.3, 2014, https://doi.org/10.7464/ksct.2014.20.3.277
  5. Kinetics and Equilibrium Isotherm Studies for the Aqueous Lithium Recovery by Various Type Ion Exchange Resins vol.26, pp.9, 2016, https://doi.org/10.3740/MRSK.2016.26.9.498
  6. Preparation of PVC-LMO Beads Using Dimethyl Sulfoxide Solvent and Adsorption Characteristics of Lithium Ions vol.20, pp.2, 2014, https://doi.org/10.7464/ksct.2014.20.2.154