References
- Lim, H., Gu, Y., and Oyama, S. T., "Reaction of Primary and Secondary Products in a Membrane Reactor: Studies of Ethanol Steam Reforming with a Silica-alumina Composite Membrane," J. Membr. Sci., 351, 149-159 (2010). https://doi.org/10.1016/j.memsci.2010.01.042
- Klouz, V., Fierro, V., Denton, P., Katz, H., and Lisse, J. P., Bouvot-Mauduit, S., and Mirodatos, C., "Ethanol Reforming for Hydrogen Production in a Hybrid Electric Vehicle: Process Optimisation," J. Power Sources, 105, 26-34 (2002). https://doi.org/10.1016/S0378-7753(01)00922-3
-
Marino, F., Boveri, M., Baronetti, G., and Laborde, M., "Hydrogen Production from Steam Reforming of Bioethanol Using Cu/Ni/K/g-
$Al_2O_3$ Catalysts. Effectof Ni," Int. J. Hydrogen Energy, 26, 665-668 (2001). https://doi.org/10.1016/S0360-3199(01)00002-7 - Llorca, J., Homs, N., Sales, J., Fierro, J.- L. G., and Piscina, P. R. de la, "Effect of Sodium Addition on the Performance of Co-ZnO-based Catalysts for Hydrogen Production from Bioethanol," J. Catal., 222, 470-480 (2004). https://doi.org/10.1016/j.jcat.2003.12.008
-
Diagne, C., Idriss, H., and Kiennemann, A., "Hydrogen Production by Ethanol Steam Reforming over
$Rh/CeO_2-ZrO_2$ Catalysts," Catal. Commun., 3, 565-571 (2002). https://doi.org/10.1016/S1566-7367(02)00226-1 - Sun, J., Qiu, X., Wu, F., Zhu, W., Wang, W., and Hao, S., "Hydrogen from Steam Reforming of Ethanol in Low and Middle Temperature Range for Fuel Cell Application," Int. J. Hydrogen Energy, 29, 1075-1081 (2004). https://doi.org/10.1016/j.ijhydene.2003.11.004
- Batista, M. S., Santos, R. K. S., Assaf, E. M., Assaf, J. M., and Ticianelli, E. A., "High Efficiency Steam Reforming of Ethanol by Cobalt-based Catalysts," J. Power Sources, 134, 27-32 (2004). https://doi.org/10.1016/j.jpowsour.2004.01.052
-
Biswas, P., and Kunzru, D., "Steam Reforming of Ethanol for Production of Hydrogen over
$Ni/CeO_2-ZrO_2$ Catalyst: Effect of Support and Metal Loading," Int. J. Hydrogen Energy, 32, 969-980 (2007). https://doi.org/10.1016/j.ijhydene.2006.09.031 -
Kwak, B. S., Kim, J., and Kang, M., "Hydrogen Production from Ethanol Steam Reforming over Coreeshell Structured
$Ni_xO_{y-},\;Fe_xO_{y-},\;and\;Co_xO_{y-}Pd $ Catalysts," Int. J. Hydrogen Energy, 35, 11829-11843 (2010). https://doi.org/10.1016/j.ijhydene.2010.08.073 -
Abdelkader, A., Daly, H., Saih, Y., Morgan, K., Mohamed, M. A., Halawy, S. A., and Hardacre, C., "Steam Reforming of Ethanol over
$Co_3O_{4-}Fe_2O_3$ Mixed Oxides," Int. J. Hydrogen Energy, 38, 8263-8275 (2013). https://doi.org/10.1016/j.ijhydene.2013.04.009 -
Han, S. J., Bang, Y., Yoo. J., Seo J. G., and Song, I. K., "Hydrogen Production by Steam Reforming of Ethanol over Mesoporous
$Ni-Al_2O_{3-}ZrO_2$ xerogel catalysts: Effect of Nickel Content," Int. J. Hydrogen Energy, 38, 8285-8292 (2013). https://doi.org/10.1016/j.ijhydene.2013.04.141 - Xu, J., and Froment, G. F. "Methane Steam Reforming, Methanation and Water-gas Shift: I. Intrinsic Kinetics," AIChE J., 35, 88-96 (1989). https://doi.org/10.1002/aic.690350109
- Therdthianwong , A., Sakulkoakiet, T., and Therdthianwong, S., "Hydrogen Production by Catalytic Ethanol Steam Reforming," ScienceAsia, 27, 193-198 (2001). https://doi.org/10.2306/scienceasia1513-1874.2001.27.193
-
Orucu, E., Gokaliler, F., Aksoylu, A. E., and Onsan, Z. I., "Ethanol Steam Reforming for Hydrogen Production over Bimetallic
$Pt-Ni/Al_2O_3$ ," Catal. Lett., 120, 198-203 (2008). https://doi.org/10.1007/s10562-007-9269-4 -
Akande, A., Aboudheir, A., Idem, R., and Dalai, A., "Kinetic Modeling of Hydrogen Production by the Catalytic Reforming of Crude Ethanol over a Co-precipitated
$Ni/Al_2O_3$ Catalyst in a Packed Bed Tubular Reactor," Int. J. Hydrogen Energy, 31, 1707-1715 (2006). https://doi.org/10.1016/j.ijhydene.2006.01.001 - Yun, S., Lim, H., and Oyama, S. T., "Experimental and Kinetic Studies of the Ethanol Steam Reforming Reaction Equipped with Ultrathin Pd and Pd-Cu Membranes for Improved Conversion and Hydrogen yield," J. Membr. Sci., 409-410, 222-231 (2012). https://doi.org/10.1016/j.memsci.2012.03.059
-
Sun, J., Qiu, X.-P., Wu, F., and Zhu, W.-T., "
$H_2$ from Steam Reforming of Ethanol at Low Temperature over$Ni/Y_2O_3,\;Ni/La_2O_3\;and\;Ni/Al_2O_3$ Catalysts for Fuel-cell Application," Int. J. Hydrogen Energy, 30, 437-445 (2005). https://doi.org/10.1016/j.ijhydene.2004.11.005 -
Vaidya, P. D., and Rodrigues, A. E., "Kinetics of Steam Reforming of Ethanol over a
$Ru/Al_2O_3$ Catalyst," Ind. Eng. Chem. Res., 45, 6614-6618 (2006). https://doi.org/10.1021/ie051342m - Veronica, M., Graciela, B., Norma, A., and Miguel, L., "Ethanol Steam Reforming Using Ni(II)-Al(III) Layered Double Hydroxide as Catalyst Precursor Kinetic study," Appl. Chem. Eng. J., 138, 602-607 (2008). https://doi.org/10.1016/j.cej.2007.08.035
- Sanchez Marcano, J. G., and Tsotsis, T. T., Catalytic Membranes and Membrane Reactors, 1st ed., WILEY-VCH, Weinheim, 2002, p.5.
- De Vos, R. M., and Verweij, H., "High-Selectivity, High-Flux Silica Membranes for Gas Separation," Science, 279, 1710-1711 (1998). https://doi.org/10.1126/science.279.5357.1710
- Kusakabe, K., Sakamoto, S., Saie, T., and Morooka, S., "Pore Structure of Silica Membranes Formed by a Sol-Gel Technique Using Tetraethoxysilane and Alkyltriethoxysilanes," Sep. Purif. Technol., 16, 139-146 (1999). https://doi.org/10.1016/S1383-5866(98)00120-8
- Fujii,T., Yano, T., Nakamura, K., and Miyawaki, O., "The Sol-Gel Preparation and Characterization of Nanoporous Silica Membrane with Controlled Pore Size," J. Membr. Sci.,187, 171-180 (2001). https://doi.org/10.1016/S0376-7388(01)00338-6
- Pakizeh, M., Omidkhah, M. R., and Zarringhalam A., "Synthesis and Characterization of New Silica Membranes Using Template-Sol-Gel Technology," Int. J. Hydrogen Energy, 32, 1825-1836 (2007).
-
Tsapatsis, M., and Gavalas, G., "Structure and Aging Characteristics of H2-Permselective
$SiO_2$ -Vycor Membranes," J. Membr. Sci., 87, 281-296 (1994). https://doi.org/10.1016/0376-7388(94)87034-9 -
Morooka, S., Yan, S., Kusakabe, K., and Akiyama, Y., "Formation of Hydrogen Permselective
$SiO_2$ Membrane in Macropores of a Alumina Support Tube by Thermal Decomposition of TEOS," J. Membr. Sci., 101, 89-98 (1995). https://doi.org/10.1016/0376-7388(94)00293-8 - Gu, Y., and Oyama, S. T., "Ultrathin, Hydrogen-Selective Silica Membranes Deposited on Alumina-Graded Structures Prepared from Size-Controlled Boehmite Sols," J. Membr. Sci., 306, 216-227 (2007). https://doi.org/10.1016/j.memsci.2007.08.045
- Khatib, S. J., and Oyama, S. T., "Silica Membranes for Hydrogen Separation Prepared by Chemical Vapor Deposition (CVD)," Sep. Purif. Technol., 111, 20-42 (2013). https://doi.org/10.1016/j.seppur.2013.03.032
- Gu, Y., Hacarlioglu, P., and Oyama, S. T., "Hydrothermally Stable Silica-Alumina Composite Membranes for Hydrogen Separation," J. Membr. Sci., 310, 28-37 (2008). https://doi.org/10.1016/j.memsci.2007.10.025
- Gu, Y., and Oyama, S. T., "Permeation Properties and Hydrothermal Stability of Silica-Titania Membranes Supported on Porous Alumina Substrates," J. Membr. Sci., 345, 267-275 (2009). https://doi.org/10.1016/j.memsci.2009.09.009
- Kanezashi, M., and Asaeda, M., "Hydrogen Permeation Characteristics and Stability of Ni-Doped Silica Membranes in Steam at High Temperature,", J. Membr. Sci., 271, 86-93 (2006). https://doi.org/10.1016/j.memsci.2005.07.011
- Boffa, V., Blank, D. H. A., and Ten Elshof J. E., "Hydrothermal Stability of Microporous Silica and Niobia-Silica Membranes," J. Membr. Sci., 319, 56-263 (2008).
- Yan, S., Maeda, H., Kusakabe, K., and Morooka, S., "Thin Palladium Membrane Formed in Support Pores by Metal-Organic Chemical Vapor Deposition Method and Application to Hydrogen Separation," Ind. Eng. Chem. Res., 33, 616-622 (1994). https://doi.org/10.1021/ie00027a019
- Xomeritakis, G., and Lin, Y. S., "Fabrication of a Thin Palladium Membrane Supported in a Porous Ceramic Substrate by Chemical Vapor Deposition," J. Membr. Sci., 120, 261-272 (1996). https://doi.org/10.1016/0376-7388(96)00149-4
- Huang, L., Chert, C. S., He, Z. D., Peng, D. K., and Meng, G. Y., "Palladium Membranes Supported on Porous Ceramics Prepared by Chemical Vapor Deposition," Thin Solid Films, 302, 98-101 (1997). https://doi.org/10.1016/S0040-6090(97)00035-7
- Jun, C.-S., and Lee, K.-H., "Palladium and Palladium Alloy Composite Membranes Prepared by Metal-organic Chemical Vapor Deposition Method (Cold-Wall)," J. Membr. Sci., 176, 121-130 (2000). https://doi.org/10.1016/S0376-7388(00)00438-5
- Yeung, K. L., Christiansen, S. C., and Varma, A., "Palladium Composite Membranes by Electroless Plating Technique: Relationships between Plating Kinetics, Film Microstructure and Membrane Performance," J. Membr. Sci., 159, 107-122 (1999). https://doi.org/10.1016/S0376-7388(99)00041-1
- Cheng, Y. S., and Yeung, K. L., "Effects of Electroless Plating Chemistry on the Synthesis of Palladium Membranes," J. Membr. Sci., 182, 195-203 (2001). https://doi.org/10.1016/S0376-7388(00)00563-9
- Gade, S. K., Thoen, P. M., and Way, J. D., "Unsupported Palladium Alloy Foil Membranes Fabricated by Electroless Plating," J. Membr. Sci., 316, 112-118 (2008). https://doi.org/10.1016/j.memsci.2007.08.022
- Uemiya, S., Matsuda, T., and Kikuchi, E., "Hydrogen Permeable Palladium-Silver Alloy Membrane Supported on Porous Ceramics," J. Membr. Sci., 56, 315-325 (1991). https://doi.org/10.1016/S0376-7388(00)83041-0
- Tong, J., Su, L., Kashima, Y., Shirai, R., Suda, H., and Matsumura, Y., "Simultaneously Depositing Pd-Ag Thin Membrane on Asymmetric Porous Stainless Steel Tube and Application to Produce Hydrogen from Steam Reforming of Methane," Ind. Eng. Chem. Res. 45, 648-655 (2006). https://doi.org/10.1021/ie050935u
- Peters, T., Tucho, W. M., Ramachandran A., Stange, M., Walmsley, J. C., Holmestad, R., Borg, A., and Bredesen, R., "Thin Pd-23%Ag/Stainless Steel Composite Membranes: Long- Term Stability, Life-Time Estimation and Post-Process Characterization," J. Membr. Sci., 326, 572-581 (2009). https://doi.org/10.1016/j.memsci.2008.10.053
- Nam, S.-E., and Lee, K.-H., "Hydrogen Separation by Pd Alloy Composite Membranes: Introduction of Diffusion Barrier," J. Membr. Sci., 192, 177-185 (2001). https://doi.org/10.1016/S0376-7388(01)00499-9
- Roa, F., Way, J. D., McCormick, R. L., and Paglieri, S. N., "Preparation and Characterization of Pd-Cu Composite Membranes for Hydrogen Separation," Chem. Eng. J., 93, 11-22 (2003). https://doi.org/10.1016/S1385-8947(02)00106-7
-
Kulprathipanja, A., Alptekin, G. O., Falconer, J. L., and Way, J. D., "Pd and Pd-Cu Membranes: Inhibition of
$H_2$ Permeation by$H_2S$ ," J. Membr. Sci., 254, 49-62 (2005). https://doi.org/10.1016/j.memsci.2004.11.031 - Thoen, P. M., Roa, F., and Way, J. D., "High Flux Palladium- Copper Composite Membranes for Hydrogen Separations," Desalination, 193, 224-229 (2006). https://doi.org/10.1016/j.desal.2005.09.025
-
O'Brien, C. P., Howard, B. H., Miller, J. B., Morreale, B. D., and Gellman, A. J.,"Inhibition of Hydrogen Transport through Pd and
$Pd_{47}Cu_{53} $ Membranes by$H_2S$ at$350^{\circ}C$ ," J. Membr. Sci., 349, 380-384 (2010). https://doi.org/10.1016/j.memsci.2009.11.070 - Gade, S. K., Payzant, E. A., Park, H. J., Thoen, P. M., and Way, J. D., "The Effects of Fabrication and Annealing on the Structure and Hydrogen Permeation of Pd-Au Binary Alloy Membranes," J. Membr. Sci., 340, 227-233 (2009). https://doi.org/10.1016/j.memsci.2009.05.034
-
Chen, C.-H., and Ma, Y. H., "The Effect of
$H_2S$ on the Performance of Pd and Pd/Au Composite Membrane," J. Membr. Sci., 362, 535-544 (2010). https://doi.org/10.1016/j.memsci.2010.07.002 - Shi, L., Goldbach, A., Zeng, G., and Xu, H., "Preparation and Performance of Thin-Layered PdAu/Ceramic Composite Membranes," Int. J. Hydrogen Energy, 35, 4201-4208 (2010).
- Gade, S. K., DeVoss, S. J., Coulter, K. E., Paglieri, S. N., Alptekin, G. O., and Way, J. D., "Palladium-Gold Membranes in Mixed Gas Streams with Hydrogen Sulfide: Effect of Alloy Content and Fabrication Technique," J. Membr. Sci., 378, 35-41 (2011). https://doi.org/10.1016/j.memsci.2010.11.044
- Gade, S. K., Keeling, M. K., Davidson, A. P., Hatlevik, O., and Way, J. D., "Palladium-Ruthenium Membranes for Hydrogen Separation Fabricated by Electroless Co-Deposition," Int. J. Hydrogen Energy, 34, 6484-6491 (2009). https://doi.org/10.1016/j.ijhydene.2009.06.037
- Ryi, S.-K., Li, A., Lim, C. J., and Grace, J. R., "Novel Non-Alloy Ru/Pd Composite Membrane Fabricated by Electroless Plating for Hydrogen Separation," Int. J. Hydrogen Energy, 36, 9335-9340 (2011). https://doi.org/10.1016/j.ijhydene.2010.06.014
-
Lee, D., Hacarlioglu, P., and Oyama, S. T., "The Effect of Pressure in Membrane Reactors: Trade-off in Permeability and Equilibrium Conversion in the Catalytic Reforming of
$CH_4$ with$CO_2$ ," Top. Catal., 29, 45-57 (2004). https://doi.org/10.1023/B:TOCA.0000024927.26174.9b - Tsuru, T., Yamaguchi, K., Yoshioka, T., and Asaeda, M., "Methane Steam Reforming by Microporous Catalytic Membrane Reactors," AICHE J., 50, 2794-2805 (2004). https://doi.org/10.1002/aic.10215
- Tong, J., and Matsumura, Y., "Effect of Catalytic Activity on Methane Steam Reforming in Hydrogen-permeable Membrane Reactor," Appl. Catal. A, 286, 226-231 (2005). https://doi.org/10.1016/j.apcata.2005.03.013
- Hacarlioglu, P., Gu, Y., and Oyama, S. T., "Studies of the Methane Steam Reforming Reaction at High Pressure in a Ceramic Membrane Reactor," J. Nat. Gas Chem., 15, 73-81 (2006). https://doi.org/10.1016/S1003-9953(06)60011-X
-
Kikuchi, E., Kawabe, S., and Matsukata, M., "Steam Reforming of Methanol on
$Ni/Al_2O_3$ Catalyst in a Pd-membrane Reactor," J. Jpn. Petro. Inst., 46, 93-98 (2003). https://doi.org/10.1627/jpi.46.93 - Tosti, S., Basile, A., Borgognoni, F., Capaldo, V., Cordiner, S., Di Cave, S., Gallucci, F., Rizzello, C., Santucci, A., and Traversa, E., "Low Temperature Ethanol Steam Reforming in a Pd-Ag Membrane Reactor Part 1: Ru-based Catalyst," J. Membr. Sci., 308, 250-257 (2008). https://doi.org/10.1016/j.memsci.2007.10.001
- Tosti, S., Basile, A., Borgognoni, F., Capaldo, V., Cordiner, S., Di Cave, S., Gallucci, F., Rizzello, C., Santucci, A., and Traversa, E., "Low-temperature Ethanol Steam Reforming in a Pd-Ag Membrane Reactor Part 2. Pt-based and Ni-based Catalysts and General Comparison," J. Membr. Sci., 308, 258-263 (2008). https://doi.org/10.1016/j.memsci.2007.09.063
- Yu, C.-Y., Lee, D.-W., Park, S.-J., Lee, K.-Y., and Lee, K.-H., "Ethanol Steam Reforming in a Membrane Reactor with Pt- Impregnated Knudsen Membranes," Appl. Catal. B, 86, 121-126 (2009). https://doi.org/10.1016/j.apcatb.2008.08.006
-
Lopez, E., Divins, N. J., and Llorca, J., "Hydrogen Production from Ethanol over Pd-Rh/
$CeO_2$ with a Metallic Membrane Reactor," Catal. Today, 193, 145-150 (2012). https://doi.org/10.1016/j.cattod.2012.06.030 - Lim, H., Gu, Y., and Oyama, S. T., "Studies of the Effect of Pressure and Hydrogen Permeance on the Ethanol Steam Reforming Reaction with Palladium- and Silica-Based Membranes," J. Membr. Sci., 396, 119-127 (2012). https://doi.org/10.1016/j.memsci.2012.01.004
- Oyama, S. T., and Lim, H.,, "An Operability Level Coefficient (OLC) as a Useful Tool for Correlating the Performance of Membrane Reactors," Chem. Eng. J., 151, 351-358 (2009). https://doi.org/10.1016/j.cej.2009.04.017
Cited by
- Feasibility Study of Employing a Catalytic Membrane Reactor for a Pressurized CO2and Purified H2Production in a Water Gas Shift Reaction vol.20, pp.4, 2014, https://doi.org/10.7464/ksct.2014.20.4.425