DOI QR코드

DOI QR Code

The Effect of the Binder to Zeolite Thin Film Coating by Heat Treatment

열처리를 통한 제올라이트 박막 코팅 시 바인더의 영향

  • 유영석 (한국건설기술연구원, 수자원.환경연구본부 환경연구실) ;
  • 조준호 (한국건설기술연구원, 수자원.환경연구본부 환경연구실) ;
  • 김이태 (한국건설기술연구원, 수자원.환경연구본부 환경연구실)
  • Received : 2013.11.29
  • Accepted : 2013.12.25
  • Published : 2013.12.31

Abstract

This study is an experimental attempt to confirm the binder effect of zeolite coating on glass plate by heat treatment. As a result, zeolite was successfully formed with low concentratios of pressure, whose concentration was effective in 10% or more for thin film zeolite coating. And as the content of the binder (TEOS) in mixed coating solution was higher, the zeolite was fastened better on the surface. Above 5% content of the binder in the coating solution, TEOS hindered zeolite synthesis of the precursor and brought to zeolite capacity decrease. Furthermore, when the concentration of the precursor, sedimentation rate of the precursor was higher and the coating efficiency is reduced thereby. Therefore, the most effective concentrations of the precursor and TEOS in the coating solution was 10% and 5%, respectively. It was concluded that zeolite coating is produced by heat treatment method after dipping without hydrothermal synthesis.

Keywords

References

  1. T. Bein, Chem. Mater., 8 (1996) 1636. https://doi.org/10.1021/cm960148a
  2. A. Tavolaro, E. Drioli, Adv. Mater., 11 (1999) 975. https://doi.org/10.1002/(SICI)1521-4095(199908)11:12<975::AID-ADMA975>3.0.CO;2-0
  3. J. Caro, M. Noack, P. Kolsch, R. Schafer, Microporous Mesoporous Mat., 38 (2000) 3. https://doi.org/10.1016/S1387-1811(99)00295-4
  4. M. Noack, P. Kolsch, P. Toussaint, J. Caro, Chem. Eng. Technol., 25 (2002) 221. https://doi.org/10.1002/1521-4125(200203)25:3<221::AID-CEAT221>3.0.CO;2-W
  5. M. Bernal, G. Xomeritakis, M. Tsapatsis, Catal. Today, 67 (2001) 101. https://doi.org/10.1016/S0920-5861(01)00269-3
  6. R. Lai, G. R. Gavalas, Ind. Eng. Chem. Res., 37 (1998) 4275. https://doi.org/10.1021/ie980265a
  7. O. Larlus, V. Valtchev, J. Patarin, A.-C. Faust, B. Maquin, Microporous Mesoporous Mat., 56 (2002) 175. https://doi.org/10.1016/S1387-1811(02)00483-3
  8. V. Valtchev, S. Mintova, L. Konstantinov, Zeolites, 15 (1995) 679. https://doi.org/10.1016/0144-2449(95)00071-D
  9. V. Valtchev, B. J. Schoeman, J. Hedlund, S. Mintova, J. Sterte, Zeolites, 17 (1996) 408. https://doi.org/10.1016/S0144-2449(96)00089-9
  10. V. Valtchev, J. Hedlund, B. J. Schoeman, J. Sterte, S. Mintova, Microporous Materials, 8 (1997) 93. https://doi.org/10.1016/S0927-6513(96)00066-1
  11. K.-K. Song, K. Ha, Korean Chem. Eng. Res., 44 (2006) 243.
  12. F.-Z. Zhang, M. Fuji, M. Takahashi, Chem. Mater., 17 (2005) 1167. https://doi.org/10.1021/cm048644j
  13. V. Valtchev, S. Mintova, I. Vulchev, V. Lazarova, J. Chem. Soc., Chem. Commun., (1994) 2087.
  14. O. Larlus, V. Valtchev, J. Patarin, A.-C. Faust, B. Maquin, Microporous Mesoporous Mat., 56 (2002) 175. https://doi.org/10.1016/S1387-1811(02)00483-3
  15. R. Lai, G. R. Gavalas, Ind. Eng. Chem. Res., 37 (1998) 4275. https://doi.org/10.1021/ie980265a
  16. Z. Lai, M. Tsapatsis, J. P. Nicolich, Adv. Funct. Mater., 14 (2004) 716. https://doi.org/10.1002/adfm.200400040
  17. Z. Lai, G. Bonilla, I. Diaz, J. G. Nery, K. Sujaoti, M. A. Amat, E. Kokkoli, O. Terasaki, R. W. Thompson, M. Tsapatsis, D. G. Vlachos, Science, 300 (2003) 456.
  18. J. Dong, E. A. Payzant, M. Z. C. Hu, D. W. Depaoli, J. Mater. Sci., 38 (2003) 979. https://doi.org/10.1023/A:1022381326613
  19. E.-I. Kim, Master's Thesis, Inha University (2006).
  20. K.-K. Song, K. Ha, Theories and Applications of Chem. Eng., 11 (2005) 565.
  21. L. E. Scriven, Better Ceramics Through Chemistry III, 121 (1988) 717.