DOI QR코드

DOI QR Code

Ti가 첨가된 Mn-Cu 혼합산화물을 이용한 저온 SCR 반응 특성

Characterization of Low Temperature Selective Catalytic Reduction over Ti Added Mn-Cu Metal Oxides

  • Lee, Hyun Hee (Department of Environmental Energy Systems Engineering, Graduate School of Kyonggi University) ;
  • Park, Kwang Hee (R&D Center, Alantum Corp.) ;
  • Cha, Wang Seog (Department of Environmental Engineering, University of Kunsan)
  • 투고 : 2013.05.13
  • 심사 : 2013.09.05
  • 발행 : 2013.12.10

초록

본 연구는 공침법으로 Ti가 첨가된 Mn-Cu 혼합산화물을 이용하여 $200^{\circ}C$ 이하의 저온 영역에서의 $NH_3$-SCR 반응특성에 관한 것이다. 제조된 촉매들은 BET, XRD, XPS, TPD를 이용하여 각각의 물리/화학적 특성을 분석하였다. Mn-Cu 혼합산화물은 매우 큰 비표면적과 저온에서의 높은 SCR 효율을 나타내었으며, Ti가 첨가된 경우 상대적으로 높은 SCR 효율과 $N_2$ 선택도를 나타내었다. 이러한 결과는 Ti가 첨가됨에 따라 화학 흡착된 산소종($Me-O_{ads}$)이 증가하여 NO가 $NO_2$로의 산화가 촉진되고, $Mn^{3+}$와 같은 $NH_3$의 흡착점의 수가 증가되었기 때문이다.

In this study, Ti added Mn-Cu mixed oxide catalysts were prepared by a co-precipitation method and used for the low temperature (< $200^{\circ}C$) selective catalytic reduction (SCR) of NOx with $NH_3$. Physicochemical properties of these catalysts were characterized by BET, XRD, XPS, and TPD. Mn-Cu mixed oxide catalysts were found to be amorphous with a large surface and they showed high SCR activity. Experimental results showed that the addition of $TiO_2$ to Mn-Cu oxide enhanced the SCR activity and $N_2$ selectivity. Ti addition led to the chemically adsorbed oxygen species that promoted the oxidation of NO to $NO_2$ and increased the number of $NH_3$ adsorbed-sites such as $Mn^{3+}$.

키워드

참고문헌

  1. M. J. Jeon, J. K. Jeon, S. H. Park, and Y. K. Park, Removal of nitrogen oxides using $Cu-Mn/CeO_{2}-ZrO2_{2}$ catalyst, Appl. Chem. Eng., 23, 348-351 (2012).
  2. X. Tang, J. Hao, W. Xu, and J. Li, Low temperature selective catalytic reduction of NOx with $NH_{3}$ over amorphous MnOx catalysts prepared by three methods, Catal. Commun., 8, 329-334 (2007). https://doi.org/10.1016/j.catcom.2006.06.025
  3. T. S. Park, S. K. Jeong, S. H. Hong, and S. C. Hong, Selective catalytic reduction of nitrogen oxides with $NH_{3}$ over natural manganese ore at low temperature, Ind. Eng. Chem. Res., 40, 4491- 4495 (2001). https://doi.org/10.1021/ie010218+
  4. M. Kang, E. D. Park, J. M. Kim, and J. E. Yie, Cu-Mn mixed oxides for low temperature NO reduction with $NH_{3}$, Catal. Today, 111, 236-241 (2006). https://doi.org/10.1016/j.cattod.2005.10.032
  5. G. Qi, R. T. Yang, and R. Chang, $MnOx-CeO_{2}$ mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with $NH_{3}$ at low temperatures, Appl. Catal. B: Environ., 51, 93-106 (2004). https://doi.org/10.1016/j.apcatb.2004.01.023
  6. G. Qi and R. T. Yang, Performance and kinetics study for low-temperature SCR of NO with $NH_{3}$ over $MnOx-CeO_{2}$ catalyst, J. Catal., 217, 434-441 (2003). https://doi.org/10.1016/S0021-9517(03)00081-2
  7. M. Kang, E. D. Park, J. M. Kim, and J. E. Yie, Manganese oxide catalysts for NOx reduction with $NH_{3}$ at low temperatures, Appl. Catal. A: Gen., 327, 261-269 (2007). https://doi.org/10.1016/j.apcata.2007.05.024
  8. L. Singoredjo, R. Korver, F. Kapteijn, and J. Moulijin, Alumina supported manganese oxides for the low-temperature selective catalytic reduction of nitric oxide with ammonia, Appl. Catal. B: Environ., 1, 297-316 (1992). https://doi.org/10.1016/0926-3373(92)80055-5
  9. A. Z. Ma and W. Grunert, Selective catalytic reduction of NO by ammonia over Fe-ZSM-5 catalysts, Chem. Commun., 1, 71-72 (1999).
  10. W. S. Kijlstra, M. Biervliet, E. K. Poels, and A. Bliek, Mechanism of the Selective Catalytic Reduction of NO by $NH_{3}$ over $MnOx/Al2O_{3}$, J. Catal., 171, 219-230 (1997). https://doi.org/10.1006/jcat.1997.1789
  11. J. Li, J. Chen, R. Ke, C. Luo, and J. Hao, Effects of precursors on the surface Mn species and the activities for NO reduction over $MnOx/TiO_{2}$ catalysts, Catal. Commun., 8, 1896-1900 (2007). https://doi.org/10.1016/j.catcom.2007.03.007
  12. G. Marban, T. Valdes-Solis, and A. B. Fuertes, Mechanism of low-temperature selective catalytic reduction of NO with $NH_{3}$ over carbon-supported $Mn_{3}O_{4}$ role of surface $NH_{3}$ species: SCR mechanism, J. Catal., 226, 138-155 (2004). https://doi.org/10.1016/j.jcat.2004.05.022
  13. Z. H. Chen, X. H. Xi, C. P. Cen, X. Gao, and L. F. Wang, Selective Catalytic Reduction of NOx on Cr-Mn mixed oxide at low temperature, Advanced Materials Research, 233, 1564-1567 (2011).
  14. M. R. Morales, B. P. Barbero, and L. E. Cadus, Total oxidation of ethanol and propane over Mn-Cu mixed oxide catalysts, Appl. Catal. B: Environ., 67, 229-236 (2006). https://doi.org/10.1016/j.apcatb.2006.05.006
  15. W. Shan, F. Liu, H. He, X. Shi, and C. Zhang, An environmentally- benign $CeO_{2}-TiO_{2}$ catalyst for the selective catalytic reduction of NOx with $NH_3$ in simulated diesel exhaust, Catal. Today, 184, 160-165 (2012). https://doi.org/10.1016/j.cattod.2011.11.013
  16. G. Qi and R. T. Yang, Characterization and FTIR studies of $MnOx- CeO_{2}$ catalyst for low-temperature Selective Catalytic Reduction of NO with $NH_{3}$, J. Phys. Chem. B, 108, 15738-15747 (2004). https://doi.org/10.1021/jp048431h
  17. J. H. Ko, S. H. Park, J. K. Jeon, J. M. Sohn, S. H. Lee, and Y. K. Park, Low Temperature Selective Catalytic Reduction of NO with $NH_{3}$ over $Mn/CeO_{2}$ and $Mn/ZrO_{2}$, Appl. Chem. Eng., 23, 105-111 (2012).
  18. J. Papavasiliou, G. Avgouropoulos, and T. Ioannides, Combined steam reforming of methanol over Cu-Mn spinel oxide catalysts, J. Catal., 251, 7-20 (2007). https://doi.org/10.1016/j.jcat.2007.07.025
  19. J. S. Dalton, P. A. Janes, N. Jones, J. A. Nicholson, K. R. Hallam, and G. C. Allen, Photocatalytic oxidation of NOx gases using $TiO_{2}$: a surface spectroscopic approach, Environ. Pollut., 120, 415-422 (2002). https://doi.org/10.1016/S0269-7491(02)00107-0
  20. X. Zhang, K. Ma, L. Zhang, G. Yong, Y. Dai, and S. Liu, Effect of precipitation method and Ce doping on the catalytic activity of copper manganese oxide catalysts for CO oxidation, Chinese J. Chem. Phys., 24, 97-102 (2011). https://doi.org/10.1088/1674-0068/24/01/97-102
  21. W. Shan, F. Liu, H. He, X. Shi, and C. Zhang, A superior Ce-W-Ti mixed oxide catalyst for the selective catalytic reduction of NOx with $NH_{3}$, Appl. Catal. B: Environ., 115, 100-106 (2012).
  22. D. A. Pena, B. S. Uphade, and P. G. Smimiotis, $TiO_{2}$-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with $NH_{3}$: I. Evaluation and characterization of first row transition metals, J. Catal., 221, 421-431 (2004). https://doi.org/10.1016/j.jcat.2003.09.003
  23. M. Koebel, M. Elsener, and G. Madia, Reaction pathways in the Selective Catalytic Reduction process with NO and $NO_{2}$ at low temperatures, Ind. Eng. Chem. Res., 40, 52-59 (2001). https://doi.org/10.1021/ie000551y
  24. R. Jin, Y. Liu, Z. Wu, H. Wang, and T. Gu, Low-temperature selective catalytic reduction of NO with $NH_{3}$ over Mn-Ce oxides supported on $TiO_{2}$ and $Al_{2}O_{3}$: a comparative study, Chemosphere, 78, 1160 (2010). https://doi.org/10.1016/j.chemosphere.2009.11.049

피인용 문헌

  1. Deactivation of V2O5/TiO2 catalytic system on the sulfuric oxides vol.16, pp.11, 2015, https://doi.org/10.5762/KAIS.2015.16.11.7433
  2. 소성 및 산소농도 조건에 대한 Mn-Cu-TiO2 촉매의 탈질 특성 vol.16, pp.1, 2013, https://doi.org/10.5762/kais.2015.16.1.900
  3. 반응조건에 대한 Mn-Cu-TiO2촉매와 V/TiO2촉매의 탈질 특성 vol.17, pp.7, 2016, https://doi.org/10.5762/kais.2016.17.7.713
  4. 아세트알데히드와 오존 복합악취 저감을 위한 망간기반 촉매 성능 연구 vol.28, pp.2, 2013, https://doi.org/10.14478/ace.2016.1130